Surjectivity results for nonlinear mappings without oddness conditions
Feng, W. ; Webb, Jeffrey Ronald Leslie
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997), p. 15-28 / Harvested from Czech Digital Mathematics Library

Surjectivity results of Fredholm alternative type are obtained for nonlinear operator equations of the form ${\lambda} T(x)-S(x)=f$, where $T$ is invertible, and $T,S$ satisfy various types of homogeneity conditions. We are able to answer some questions left open by Fu\v{c}'{\i}k, Ne\v{c}as, Sou\v{c}ek, and Sou\v{c}ek. We employ the concept of an $a$-{stably-solvable} operator, related to nonlinear spectral theory methodology. Applications are given to a nonlinear Sturm-Liouville problem and a three point boundary value problem recently studied by Gupta, Ntouyas and Tsamatos.

Publié le : 1997-01-01
Classification:  34B10,  34B15,  47H12,  47H15,  47J05,  47J10,  47N20
@article{118899,
     author = {W. Feng and Jeffrey Ronald Leslie Webb},
     title = {Surjectivity results for nonlinear mappings without oddness conditions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {38},
     year = {1997},
     pages = {15-28},
     zbl = {0886.47034},
     mrnumber = {1455467},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118899}
}
Feng, W.; Webb, Jeffrey Ronald Leslie. Surjectivity results for nonlinear mappings without oddness conditions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) pp. 15-28. http://gdmltest.u-ga.fr/item/118899/

Fučík S.; Nečas J.; Souček J.; Souček V. Spectral Analysis of Nonlinear Operators, Lecture Notes in Mathematics 346, Springer-Verlag, Berlin, Heidelberg, New York, 1973. | MR 0467421

Furi M.; Martelli M.; Vignoli A. Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Mat. Pura. Appl. (IV) 118 (1978), 229-294. (1978) | MR 0533609 | Zbl 0409.47043

Webb J.R.L. On degree theory for multivalued mappings and applications, Boll. Un. Mat. It. (4) 9 (1974), 137-158. (1974) | MR 0367740 | Zbl 0293.47021

Toland J.F. Topological Methods for Nonlinear Eigenvalue Problems, Battelle Advanced Studies Centre, Geneva, Mathematics Report No. 77, 1973.

Deimling K. Nonlinear Functional Analysis, Springer Verlag, Berlin, 1985. | MR 0787404 | Zbl 0559.47040

Gupta C.P.; Ntouyas S.K.; Tsamatos P.Ch. On an $m$-point boundary-value problem for second-order ordinary differential equations, Nonlinear Analysis, Theory, Methods {&} Applications 23 (1994), 1427-1436. (1994) | MR 1306681 | Zbl 0815.34012

Gupta C.P.; Ntouyas S.K.; Tsamatos P.Ch. Solvability of an $m$-point boundary value problem for second order ordinary differential equations, J. Math. Anal. Appl. 189 (1995), 575-584. (1995) | MR 1312062 | Zbl 0819.34012

Gupta C.P. A note on a second order three-point boundary value problem, J. Math. Anal. Appl. 186 (1994), 277-281. (1994) | MR 1290657 | Zbl 0805.34017