We shall show that Open Coloring Axiom has different influence on the algebra $\Cal P(\Bbb N)/fin$ than on $\Bbb N^\Bbb N/fin$. The tool used to accomplish this is forcing with a Suslin tree.
@article{118893, author = {Ilijas Farah}, title = {OCA and towers in $\Cal P(\Bbb N)/fin$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {861-866}, zbl = {0887.03037}, mrnumber = {1440716}, language = {en}, url = {http://dml.mathdoc.fr/item/118893} }
Farah, Ilijas. OCA and towers in $\Cal P(\Bbb N)/fin$. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 861-866. http://gdmltest.u-ga.fr/item/118893/
On the consistency of some partition theorems for continuous colorings, and the structure of $\aleph_1$-dense real order types, Ann. of Pure and Appl. Logic 29 (1985), 123-206. (1985) | MR 0801036
All $\aleph_1$-dense sets of reals can be isomorphic, Fundamenta Mathematicae 79 (1973), 100-106. (1973) | MR 0317934 | Zbl 0274.02037
The Souslin Problem, Springer Lecture Notes in Mathematics, # 405 (1974). (1974) | MR 0384542
Towers in $[ømega]^ømega$ and $^ømegaømega$, Ann. of Pure and Appl. Logic 247-277 (1989), 45.3. (1989) | MR 1032832
Consequences of Martin's Axiom, Cambridge University Press (1984). (1984) | Zbl 0551.03033
Cosmicity of cometrizable spaces, Trans. AMS 313 (1989), 301-315. (1989) | MR 0992600 | Zbl 0667.54012
Partition Problems in Topology, AMS Providence, Rhode Island (1989). (1989) | MR 0980949
Oscillations of sets of integers, to appear. | MR 1601383
OCA and automorphisms of $\Cal P(ømega)/fin$, Topology Appl. 49 (1993), 1-13. (1993) | MR 1202874
personal communication, .