A new minimization principle for the Poisson equation leading to a flexible finite element approach
Lamichhane, Bishnu Prasad
ANZIAM Journal, Tome 59 (2018), / Harvested from Australian Mathematical Society

A new minimization principle for the Poisson equation using two variables – the solution and the gradient of the solution – is introduced. This principle allows us to use any conforming finite element spaces for both variables, where the finite element spaces do not need to satisfy the so-called inf–sup condition. A numerical example demonstrates the superiority of this approach. doi:10.1017/S144618111700030X

Publié le : 2018-01-01
DOI : https://doi.org/10.21914/anziamj.v59i0.11889
@article{11889,
     title = {A new minimization principle for the Poisson equation leading  to a flexible finite element approach},
     journal = {ANZIAM Journal},
     volume = {59},
     year = {2018},
     doi = {10.21914/anziamj.v59i0.11889},
     language = {EN},
     url = {http://dml.mathdoc.fr/item/11889}
}
Lamichhane, Bishnu Prasad. A new minimization principle for the Poisson equation leading  to a flexible finite element approach. ANZIAM Journal, Tome 59 (2018) . doi : 10.21914/anziamj.v59i0.11889. http://gdmltest.u-ga.fr/item/11889/