We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.
@article{118889, author = {Lutz Heindorf}, title = {Another note on countable Boolean algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {815-819}, zbl = {0887.06007}, mrnumber = {1440712}, language = {en}, url = {http://dml.mathdoc.fr/item/118889} }
Heindorf, Lutz. Another note on countable Boolean algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 815-819. http://gdmltest.u-ga.fr/item/118889/
Subalgebras, Chapter 10 in vol. 2 of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. | MR 0991598
General Topology, PWN, Warsaw, 1977. | MR 0500780 | Zbl 0684.54001
Covering properties on $X^2\setminus \Delta$, W-sets, and compact subsets of $\Sigma$-products, Topology and its Applications 17 (1978), 287-304. (1978) | MR 0752278
A note on countable Boolean algebras, Algebra Universalis 14 (1982), 257-262. (1982) | MR 0635004 | Zbl 0488.06007
General theory of Boolean algebras, vol 1. of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. | MR 0991565
Complementation in the lattice of subalgebras of a Boolean algebra, Algebra Universalis 10 (1980), 48-64. (1980) | MR 0552156 | Zbl 0432.06010