Right factorizations for a class of l.s.c\. mappings with separable metrizable range are constructed. Besides in the selection and dimension theories, these l.s.c\. factorizations are also successful in solving the problem of factorizing a class of u.s.c\. mappings.
@article{118888, author = {Valentin G. Gutev}, title = {Factorizations of set-valued mappings with separable range}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {809-814}, zbl = {0886.54016}, mrnumber = {1440711}, language = {en}, url = {http://dml.mathdoc.fr/item/118888} }
Gutev, Valentin G. Factorizations of set-valued mappings with separable range. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 809-814. http://gdmltest.u-ga.fr/item/118888/
Many-valued mappings and Borel sets, II, Trans. Moscow Math. Soc. 23 (1970), 286-310. (1970)
Selection theorems under an assumption weaker than lower semi-continuity, Topology Appl. 50 (1993), 129-138. (1993) | MR 1217481 | Zbl 0809.54015
Selections for quasi-l.s.c. mappings with uniformly equi-$LC^n$ range, Set-Valued Analysis 1 (1993), 319-328. (1993) | MR 1267200
Contribution à la théorie des ensemble homéomorphes, Fund. Math. 6 (1924), 149-160. (1924)
Continuous selections I, Ann. of Math. 63 (1956), 361-382. (1956) | MR 0077107 | Zbl 0071.15902
Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), 1 31-52. (1975) | MR 0362264 | Zbl 0336.55003
Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291-317. (1980) | MR 0644284 | Zbl 0492.54006