On the cardinality of functionally Hausdorff spaces
Fedeli, Alessandro
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 797-801 / Harvested from Czech Digital Mathematics Library

In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved: \noindent {\rm (i)} If $\,X$ is a functionally Hausdorff space then $|X| \leq 2^{fs(X) \psi_{\tau}(X)}$; \noindent {\rm (ii)} Let $X$ be a functionally Hausdorff space with $fs(X) \leq \kappa$. Then there is a subset $S$ of $X$ such that $|S| \leq 2^{\kappa}$ and $X = \bigcup \{ cl_{\tau \theta}(A): A \in [S]^{\leq \kappa} \}$.

Publié le : 1996-01-01
Classification:  54A25,  54D10,  54D70
@article{118886,
     author = {Alessandro Fedeli},
     title = {On the cardinality of functionally Hausdorff spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {797-801},
     zbl = {0886.54004},
     mrnumber = {1440709},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118886}
}
Fedeli, Alessandro. On the cardinality of functionally Hausdorff spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 797-801. http://gdmltest.u-ga.fr/item/118886/

Engelking R. General Topology. Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) | MR 1039321

Fedeli A. Two cardinal inequalities for functionally Hausdorff spaces, Comment. Math. Univ. Carolinae 35.2 (1994), 365-369. (1994) | MR 1286584 | Zbl 0807.54006

Fedeli A.; Watson S. Elementary Submodels in Topology, submitted.

Hodel R. Cardinal Functions I, Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1-61. | MR 0776620 | Zbl 0559.54003

Ishii T. On the Tychonoff functor and w-compactness, Topology Appl. 11 (1980), 175-187. (1980) | MR 0572372 | Zbl 0441.54012

Ishii T. The Tychonoff functor and related topics, Topics in General Topology, (Morita K. and Nagata J., eds.) Elsevier Science Publishers, B.V., North Holland, 1989, pp. 203-243. | MR 1053197 | Zbl 0763.54009

Juhàsz I. Cardinal functions in topology-ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980. | MR 0576927

Kočinac Lj. Some cardinal functions on Urysohn spaces, to appear. | MR 1385570

Kočinac Lj. On the cardinality of Urysohn and $H$-closed spaces, Proc. of the Mathematical Conference in Priština, 1994, pp. 105-111. | MR 1466279

Schröder J. Urysohn cellularity and Urysohn spread, Math. Japonicae 38 (1993), 1129-1133. (1993) | MR 1250339

Shapirovskii B. On discrete subspaces of topological spaces. Weight, tightness and Suslin number, Soviet Math. Dokl. 13 (1972), 215-219. (1972)

Sun S.H.; Choo K.G. Some new cardinal inequalities involving a cardinal function less than the spread and the density, Comment. Math. Univ. Carolinae 31.2 (1990), 395-401. (1990) | MR 1077911 | Zbl 0717.54002

Watson S. The construction of topological spaces: Planks and Resolutions, Recent Progress in General Topology, (Hušek M. and Van Mill J., eds.) Elsevier Science Publishers, B.V., North Holland, 1992, pp. 675-757. | MR 1229141 | Zbl 0803.54001

Watson S. The Lindelöf number of a power: an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25-34. (1994) | MR 1280708 | Zbl 0836.54004