Random coincidence degree theory with applications to random differential inclusions
Tarafdar, Enayet U, ; Watson, P. ; Yuan, George Xian-Zhi
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 725-748 / Harvested from Czech Digital Mathematics Library

The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk's odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega,x)$ where $L:\text{\it dom}\kern 1.3pt L\subset X\to Z$ is a linear Fredholm mapping of index zero and $N:\Omega\times \overline{G}\to 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.

Publié le : 1996-01-01
Classification:  34A60,  34F05,  47H04,  47H11,  47H40,  47N20,  58C30
@article{118881,
     author = {Enayet U, Tarafdar and P. Watson and George Xian-Zhi Yuan},
     title = {Random coincidence degree theory with applications to random differential inclusions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {725-748},
     zbl = {0886.47030},
     mrnumber = {1440704},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118881}
}
Tarafdar, Enayet U,; Watson, P.; Yuan, George Xian-Zhi. Random coincidence degree theory with applications to random differential inclusions. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 725-748. http://gdmltest.u-ga.fr/item/118881/

Akashi W.Y. Equivalence theorems and coincidence degree for multivalued mappings, Osaka J. Math. 25.1 (1988), 33-47. (1988) | MR 0937185

Berge C. Espaces Topologiques, Dunod, Paris (1959). (1959) | MR 0105663 | Zbl 0088.14703

Engelking R. General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989). (1989) | MR 1039321 | Zbl 0684.54001

Engl H. Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. (1978) | MR 0500323 | Zbl 0355.47035

Fan K. Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. (1952) | MR 0047317

Friedman A. Partial Differential Equations, Holt, Rinehart, Winston, New York (1969). (1969) | MR 0445088 | Zbl 0224.35002

Gaines R.E.; Mawhin J.L. Coincidence degree and nonlinear differential equations, Springer-Verlag Lecture Notes No. 568 (1977). (1977) | MR 0637067 | Zbl 0339.47031

Gaines R.E.; Peterson J.K. Periodic solutions to differential inclusions, Nonlinear Analysis 5 (1981), 1109-1131. (1981) | MR 0636724 | Zbl 0475.34023

Gilbarg D.; Trudinger N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag New York (1983). (1983) | MR 0737190 | Zbl 0562.35001

Glicksberg I. A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) | MR 0046638

Himmelberg C.J. Measurable relations, Fund. Math. 87 (1975), 53-72. (1975) | MR 0367142 | Zbl 0296.28003

Lasota A.; Opial Z. An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. 13 (1965), 781-786. (1965) | MR 0196178 | Zbl 0151.10703

Lloyd N.G. Degree Theory, Cambridge University Press (1978). (1978) | MR 0493564 | Zbl 0367.47001

Ma T.W. Topological degree for set valued compact vector fields in locally convex spaces, Dissertationes Math. 92 (1972), 1-43. (1972)

Mawhin J. Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) | MR 0328703 | Zbl 0244.47049

Nowak A. Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Pol. Acad. Sci. 34 (1986), 487-494. (1986) | MR 0874895 | Zbl 0617.60059

Nussbaum R.D. The fixed point index and fixed point theorems for $k$-set contractions, Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969.

Nussbaum R.D. The fixed point index for condensing maps, Ann. Mat. Pura. Appl. 89 (1971), 217-258. (1971) | MR 0312341

Petryshyn W.V.; Fitzpatrick P.M. A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25. (1974) | MR 2478129 | Zbl 0297.47049

Pruszko T. A Coincidence degree for $L$-compact convex-valued mappings and its applications to the Picard problem for orientor fields, Bull. Acad. Pol. Sci. 27 (1979), 895-902. (1979) | MR 0616183

T. Pruszko Topological degree methods in multivalued boundary value problems, Nonlinear Analysis 5 (1981), 959-973. (1981) | MR 0633011

Robertson A.P. On measurable selections, Proc. R.S.E. (A) 72 (1972/73), 1-7. (1972/73) | MR 0399398

Rogers C.A. Hausdorff Measures, Cambridge University Press (1970). (1970) | MR 0281862 | Zbl 0204.37601

Sadowski B.W. Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. (1972) | MR 0428132

Saint-Beuve M.F. On the existence of von Neumann-Aumann's theorem, J. Functional Analysis 17 (1974), 112-129. (1974) | MR 0374364

Saks S. Theory of the Integral, Dover, New York (1968). (1968) | MR 0167578

Tan K.K.; Yuan X.Z. On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 849-856 (1993). (1993) | MR 1169051 | Zbl 0801.47044

Tarafdar E.; Teo S.K. On the existence of solutions of the equation $Lx \in Nx$ and a coincidence degree theory, J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173. (1979) | MR 0550958 | Zbl 0431.47038

Tarafdar E.; Thompson H.B. On the solvability of nonlinear noncompact operator equations, J. Austral. Math. Soc. Ser. A 43 (1987), 103-126. (1987) | MR 0886808 | Zbl 0623.47072

Tarafdar E.; Watson P.; Yuan X.Z. Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points, Nonlinear Analysis, T.M.A. (in press), 1996.

Wagner D.H. Survey of measurable selection theorems, SIAM J. Control. Optim. 15 859-903 (1977). (1977) | MR 0486391 | Zbl 0407.28006