On the range of a Jordan *-derivation
Battyányi, Péter
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 659-665 / Harvested from Czech Digital Mathematics Library

In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.

Publié le : 1996-01-01
Classification:  46K05,  47B47,  47D50,  47L30
@article{118876,
     author = {P\'eter Batty\'anyi},
     title = {On the range of a Jordan *-derivation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {659-665},
     zbl = {0886.47017},
     mrnumber = {1440699},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118876}
}
Battyányi, Péter. On the range of a Jordan *-derivation. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 659-665. http://gdmltest.u-ga.fr/item/118876/

Apostol C.; Stampfli J.G. On derivation ranges, Indiana Univ. Math. J. 25 (1976), 857-869. (1976) | MR 0412890 | Zbl 0355.47025

Brešar M.; Zalar B. On the structure of Jordan *-derivations, Colloquium Math. 63 (1992), 163-171. (1992) | MR 1180629

Fialkow L.A.; Loebl R. Elementary mappings into ideals of operators, Ill. J. Math. 28 (1984), 555-578. (1984) | MR 0761990 | Zbl 0529.47033

Fillmore P.A.; Stampfli J.G.; Williams J.P. On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. 33 (1972), 179-192. (1972) | MR 0322534 | Zbl 0246.47006

Johnson B.E.; Williams J.P. The range of a normal derivation, Pacific J. Math. 58 (1975), 105-122. (1975) | MR 0380490 | Zbl 0275.47010

Molnár L. The range of a Jordan *-derivation, preprint. | MR 1416276

Molnár L. On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691-695. (1994) | MR 1321239

Molnár L. Jordan *-derivation pairs on a complex *-algebra, preprint. | MR 1466293

Molnár L. A condition for a subspace of $\Cal B(H)$ to be an ideal, Linear Algebra and Appl., to appear. | MR 1374262 | Zbl 0852.46021

Molnár L. The range of a Jordan *-derivation on an $H^*$-algebra, preprint. | MR 1406395

Radjavi H.; Rosenthal P. Matrices for operators and generators of $\Cal B(H)$, J. London Math. Soc. 2 (1970), 557-560. (1970) | MR 0265978

Šemrl P. On Jordan *-derivations and an application, Colloquium Math. 59 (1990), 241-251. (1990) | MR 1090656

Šemrl P. Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165. (1991) | MR 1100685

Šemrl P. Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), 1105-1113. (1993) | MR 1158008

Šemrl P. Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-518. (1994) | MR 1186136

Stampfli J.G. Derivations on $\Cal B(\Cal H)$: The range, Ill. J. Math. 17 (1973), 518-524. (1973) | MR 0318914

Stampfli J.G. On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120. (1975) | MR 0377575 | Zbl 0315.47019

Williams J.P. Derivations ranges: open questions, Topics in Modern Operator Theory (Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319-328. | MR 0672832

Zalar B. Jordan *-derivation pairs and quadratic functionals on modules over *-rings, preprint. | MR 1466292