Strong tightness as a condition of weak and almost sure convergence
Krupa, Grzegorz ; Zieba, Wiesław
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 641-650 / Harvested from Czech Digital Mathematics Library

A sequence of random elements $\{X_j, j\in J\}$ is called strongly tight if for an arbitrary $\epsilon >0$ there exists a compact set $K$ such that $P\left(\bigcap_{j\in J}[X_j\in K]\right)>1-\epsilon$. For the Polish space valued sequences of random elements we show that almost sure convergence of $\{X_n\}$ as well as weak convergence of randomly indexed sequence $\{X_{\tau}\}$ assure strong tightness of $\{X_n, n\in \Bbb N\}$. For $L^1$ bounded Banach space valued asymptotic martingales strong tightness also turns out to the sufficient condition of convergence. A sequence of r.e. $\{X_n, n\in \Bbb N\}$ is said to converge essentially with respect to law to r.e. $X$ if for all sets of continuity of measure $P\circ X^{-1}, P\left(\limsup_{n\to \infty}[X_n\in A]\right) =P\left(\liminf_{n\to \infty}[X_n\in A]\right)=P([x\in A])$. Conditions under which $\{X_n\}$ is essentially w.r.t. law convergent and relations to strong tightness are investigated.

Publié le : 1996-01-01
Classification:  60B10,  60G40
@article{118871,
     author = {Grzegorz Krupa and Wies\l aw Zieba},
     title = {Strong tightness as a condition  of weak and almost sure convergence},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {641-650},
     zbl = {0881.60003},
     mrnumber = {1426929},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118871}
}
Krupa, Grzegorz; Zieba, Wiesław. Strong tightness as a condition  of weak and almost sure convergence. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 641-650. http://gdmltest.u-ga.fr/item/118871/

Austin D.G.; Edgar G.A.; Ionescu Tulcea A. Pointwise convergence in terms of expectations, Z. Wahrscheinlichkeitsteorie verw. Gebiete 30 (1974), 17-26. (1974) | MR 0358945 | Zbl 0276.60034

Baxter J.R. Pointwise in terms of weak convergence, Proc. Amer. Math. Soc. 46 (1974), 395-398. (1974) | MR 0380968 | Zbl 0329.60029

Billingsley P. Convergence of Probability Measure, Wiley New York (1968). (1968) | MR 0233396

Diestel J.; Uhl J.J., Jr. Vector Measures, AMS Mathematical Surveys 15 (1979). (1979)

Edgar G.A.; Suchestone L. Amarts: A Class of Asymptotic Martingales. A Discrete Parameter, Journal of Multivariate Analysis 6.2 (1976). (1976) | MR 0413251

Kruk Ł.; Ziȩba W. On tightness of randomly indexed sequences of random elements, Bull. Pol. Ac.: Math. 42 (1994), 237-241. (1994) | MR 1811853

Neveu J. Discrete-Parameter Martingales, North-Holland Publishing Company (1975). (1975) | MR 0402915 | Zbl 0345.60026

Szynal D.; Ziȩba W. On some characterization of almost sure convergence, Bull. Pol. Acad. Sci. 34 (1986), 9-10. (1986) | MR 0884212