Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu$ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with \, ${\mu}^{*n} (g_n A) \equiv 1$ \, for all $n$.
@article{118870, author = {Wojciech Bartoszek}, title = {On concentrated probabilities on non locally compact groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {635-640}, zbl = {0881.22001}, mrnumber = {1426928}, language = {en}, url = {http://dml.mathdoc.fr/item/118870} }
Bartoszek, Wojciech. On concentrated probabilities on non locally compact groups. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 635-640. http://gdmltest.u-ga.fr/item/118870/
On concentrated probabilities, Ann. Polon. Math. 61.1 (1995), 25-38. (1995) | MR 1318315 | Zbl 0856.22006
The structure of random walks on semidirect products, Bull. L'Acad. Pol. Sci. ser. Sci. Math. Astr. & Phys. 43.4 (1995), 277-282. (1995) | MR 1414784 | Zbl 0849.22006
On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups, Z. Wahrsch. Verw. Gebiete 5 (1966), 279-299. (1966) | MR 0205306
Concentration functions in locally compact groups, preprint, 17 pages, 1995. | MR 1399711 | Zbl 0854.43001
Introduction to Probability and Measure, New Delhi, 1980. | Zbl 1075.28001
Geometric theory of a single Markov operator, Pacif. J. Math. 27.1 (1968), 155-166. (1968) | MR 0240281 | Zbl 0281.60083