We establish a relation between covering properties (e.g\. Lindelöf degree) of two standard topological spaces (Lemmas 4 and 5). Some cardinal inequalities follow as easy corollaries.
@article{118867, author = {Isaac Gorelic}, title = {The $G\_\delta$-topology and incompactness of $\omega^\alpha$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {613-616}, zbl = {0881.54023}, mrnumber = {1426925}, language = {en}, url = {http://dml.mathdoc.fr/item/118867} }
Gorelic, Isaac. The $G_\delta$-topology and incompactness of $\omega^\alpha$. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 613-616. http://gdmltest.u-ga.fr/item/118867/
Box products of ordered spaces, Topology and its applications 20 (1985). (1985) | MR 0804037 | Zbl 0583.54005
$\alpha$-incompactness of $N^\alpha$, Bull. Acad. Pol., vol.XII, no.8, 1964. | MR 0211871
Linear equations and pure subgroups, Bull. Acad. Polon. Sci. 7 (1959). (1959) | MR 0103922
On closed discrete subspaces of product spaces, Bull. Acad. Pol., vol.XVII, no.4, 1969. | MR 0254808
Incompactness of $\Bbb N^\theta$, Handwritten notes, 1990.