We answer a question of I. Juhasz by showing that MA $+ \neg$ CH does not imply that every compact ccc space of countable $\pi$-character is separable. The space constructed has the additional property that it does not map continuously onto $I^{\omega_1}$.
@article{118865, author = {Murray G. Bell}, title = {A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {589-594}, zbl = {0881.54004}, mrnumber = {1426923}, language = {en}, url = {http://dml.mathdoc.fr/item/118865} }
Bell, Murray G. A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 589-594. http://gdmltest.u-ga.fr/item/118865/
Applications of the Proper Forcing Axiom, Handbook of Set-Theoretic Topology, editors K.Kunen and J.Vaughan, North-Holland, 1984, pp. 913-959. | MR 0776640 | Zbl 0556.03040
Compact ccc non-separable spaces of small weight, Topology Proceedings 5 (1980), 11-25. (1980) | MR 0624458
$G_\kappa$ subspaces of hyadic spaces, Proc. Amer. Math. Soc. 104 , No.2 (1988), 635-640. (1988) | MR 0962841
Spaces of Ideals of Partial Functions, Set Theory and its Applications, Lecture Notes in Mathematics 1401, Springer-Verlag, 1989, pp. 1-4. | MR 1031761 | Zbl 0683.54013
Consequences of Martin's Axiom, Cambridge Tracts in Mathematics 84, Cambridge University Press, 1984. | Zbl 1156.03050
Cardinal Functions in Topology, Mathematical Centre Tracts 34, Mathematisch Centrum, Amsterdam, 1971. | MR 0340021 | Zbl 0479.54001
Consistency Results in Topology, Handbook of Mathematical Logic, editor J.Barwise, North-Holland, 1977, pp. 503-522. | Zbl 0257.54003
On separability and metrizability of spaces with Souslin condition, Soviet Math. Dokl. 13 (1972), 1633-1637. (1972)
Maps onto Tikhonov cubes, Russ. Math. Surv. 35.3 (1980), 145-156. (1980)
The Equivalence of Sequential Compactness and Pseudoradialness in the Class of Compact $T_2$ Spaces, Assuming CH, Papers on General Topology and Applications, Annals of the New York Academy of Sciences 704, 1993, pp. 322-327. | MR 1277868
Partition Problems in Topology, Contemporary Mathematics 84, American Mathematical Society, Providence, Rhode Island, 1989. | MR 0980949 | Zbl 0659.54001
Some Applications of the Method of Forcing, Yenisey Publ. Co., Moscow, 1995. | MR 1486583 | Zbl 1089.03500