A priori estimates and strong solvability results in Sobolev space $W^{2,p}(\Omega)$, $1
@article{118861, author = {Giuseppe di Fazio and Dian K. Palagachev}, title = {Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {537-556}, zbl = {0881.35028}, mrnumber = {1426919}, language = {en}, url = {http://dml.mathdoc.fr/item/118861} }
di Fazio, Giuseppe; Palagachev, Dian K. Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 537-556. http://gdmltest.u-ga.fr/item/118861/
On $BMO$ regularity for linear elliptic systems, Ann. Mat. Pura Appl. 161 (1992), 231-270. (1992) | MR 1174819 | Zbl 0802.35015
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727. (1959) | MR 0125307 | Zbl 0093.10401
Sobolev Spaces, Academic Press, New York, 1975. | MR 0450957 | Zbl 1098.46001
Commutators of integral operators with positive kernels, Le Matematiche XLIX (1994), 149-168. (1994) | MR 1386370 | Zbl 0840.42009
Third boundary value problem in $H^{2,p}(Ømega)$ for a class of linear second order elliptic partial differential equations, Rend. Ist. Mat. Univ. Trieste 4 (1972), 85-94. (1972) | MR 0348258
Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui, Ann. Mat. Pura Appl. (4) 112 (1977), 241-259; errata, ibid. (4) 130 (1982), 399-401. (1977) | MR 0435582
Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche di Mat. 60 (1991), 149-168. (1991) | MR 1191890
$W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with $V MO$ coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. (1993) | MR 1088476 | Zbl 0818.35023
Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. | MR 0737190 | Zbl 1042.35002
On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. (1961) | MR 0131498 | Zbl 0102.04302
An Aleksandrov-Bakelman type maximum principle and applications, J. Diff. Equations 101 (1993), 213-231. (1993) | MR 1204327 | Zbl 0812.35014
Linear second order elliptic equations with Venttsel boundary conditions, Proc. Roy. Soc. Edinburgh 118A (1991), 193-207. (1991) | MR 1121663 | Zbl 0771.35014
Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura Appl. 63 (1963), 353-386. (1963) | MR 0170090 | Zbl 0156.34001
Il terzo problema al contorno per le equazioni lineari ellittiche a coefficienti discontinui, Rend. Circ. Mat. Palermo 33 (1984), 351-368. (1984)
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162. (1959) | MR 0109940 | Zbl 0088.07601
Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) | MR 0377518 | Zbl 0319.42006
Problemi di derivata obliqua per equazioni ellittiche in due variabili, Boll. Un. Mat. Ital. (3) 22 (1967), 505-526. (1967) | MR 0231048 | Zbl 0156.33803
Una stima a priori per la soluzione del terzo problema al contorno associato ad una classe di equazioni ellittiche del secondo ordine a coefficienti non regolari, Boll. Un. Mat. Ital. (6) 3-B (1984), 397-411. (1984)