We prove a fixed point theorem for a multivalued non-self mapping in a metrically convex complete metric space. This result generalizes Theorem 1 of Itoh [2].
@article{118843,
author = {Billy E. Rhoades},
title = {A fixed point theorem for a multivalued non-self mapping},
journal = {Commentationes Mathematicae Universitatis Carolinae},
volume = {37},
year = {1996},
pages = {401-404},
zbl = {0849.47032},
mrnumber = {1399013},
language = {en},
url = {http://dml.mathdoc.fr/item/118843}
}
Rhoades, Billy E. A fixed point theorem for a multivalued non-self mapping. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 401-404. http://gdmltest.u-ga.fr/item/118843/
Theory and Applications of Distance Geometry, The Clarendon Press, Oxford, 1943. | MR 0054981 | Zbl 0208.24801
Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae 18 (1977), 247-258. (1977) | MR 0451227 | Zbl 0359.54038
Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. (1969) | MR 0254828 | Zbl 0187.45002