The following statement is proved to be independent from $[\operatorname{LB}+\neg \operatorname{CH}]$: \linebreak $(*)$ Let $X$ be a Tychonoff space with $c(X)\leq \aleph _0$ and $\pi w(X)<\frak C$. Then a union of less than $\frak C$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.
@article{118841, author = {Viacheslav I. Malykhin}, title = {Nowhere dense subsets and Booth's Lemma}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {391-395}, zbl = {0854.54005}, mrnumber = {1399011}, language = {en}, url = {http://dml.mathdoc.fr/item/118841} }
Malykhin, Viacheslav I. Nowhere dense subsets and Booth's Lemma. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 391-395. http://gdmltest.u-ga.fr/item/118841/
Martin's Axiom, in Handbook of set-theoretic topology K. Kunen and J.E. Vaughan Elsevier Science Publishers B.V. (1984), 491-501. (1984)
On the combinatorial Principle $P({\frak C})$, Fund. Math. 114 (1981), 149-157. (1981) | MR 0643555 | Zbl 0581.03038