Nowhere dense subsets and Booth's Lemma
Malykhin, Viacheslav I.
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 391-395 / Harvested from Czech Digital Mathematics Library

The following statement is proved to be independent from $[\operatorname{LB}+\neg \operatorname{CH}]$: \linebreak $(*)$ Let $X$ be a Tychonoff space with $c(X)\leq \aleph _0$ and $\pi w(X)<\frak C$. Then a union of less than $\frak C$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.

Publié le : 1996-01-01
Classification:  03E35,  03E50,  54A25,  54A35
@article{118841,
     author = {Viacheslav I. Malykhin},
     title = {Nowhere dense subsets and Booth's Lemma},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {391-395},
     zbl = {0854.54005},
     mrnumber = {1399011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118841}
}
Malykhin, Viacheslav I. Nowhere dense subsets and Booth's Lemma. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 391-395. http://gdmltest.u-ga.fr/item/118841/

Rudin M.E. Martin's Axiom, in Handbook of set-theoretic topology K. Kunen and J.E. Vaughan Elsevier Science Publishers B.V. (1984), 491-501. (1984)

Bell M.G. On the combinatorial Principle $P({\frak C})$, Fund. Math. 114 (1981), 149-157. (1981) | MR 0643555 | Zbl 0581.03038