Estimates for convergence rate of an n-Ginzburg-Landau type minimizer
Lei, Yutian
Proc. Japan Acad. Ser. A Math. Sci., Tome 83 (2007) no. 1, p. 83-87 / Harvested from Project Euclid
The paper is concerned with the asymptotic analysis of a minimizer of an $n$-Ginzburg-Landau type functional. The convergence rate of the module of minimizers is presented when the parameter $\varepsilon$ goes to zero. This conclusion shows that the functional converges to $\frac{1}{n}\int|\nabla u_n|^n$ locally when $\varepsilon \to 0$, where $u_n$ is an $n$-harmonic map.
Publié le : 2007-06-14
Classification:  $n$-Ginzburg-Landau type functional,  asymptotic analysis,  regularized minimizer,  convergence rate,  $n$-harmonic map,  35B25,  35J70,  49K20
@article{1188405576,
     author = {Lei, Yutian},
     title = {Estimates for convergence rate of an n-Ginzburg-Landau type minimizer},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {83},
     number = {1},
     year = {2007},
     pages = { 83-87},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1188405576}
}
Lei, Yutian. Estimates for convergence rate of an n-Ginzburg-Landau type minimizer. Proc. Japan Acad. Ser. A Math. Sci., Tome 83 (2007) no. 1, pp.  83-87. http://gdmltest.u-ga.fr/item/1188405576/