The paper is concerned with the asymptotic analysis of a minimizer
of an $n$-Ginzburg-Landau type functional. The convergence rate of
the module of minimizers is presented when the parameter
$\varepsilon$ goes to zero. This conclusion shows that the
functional converges to $\frac{1}{n}\int|\nabla u_n|^n$ locally
when $\varepsilon \to 0$, where $u_n$ is an $n$-harmonic map.
Publié le : 2007-06-14
Classification:
$n$-Ginzburg-Landau type functional,
asymptotic analysis,
regularized minimizer,
convergence rate,
$n$-harmonic map,
35B25,
35J70,
49K20
@article{1188405576,
author = {Lei, Yutian},
title = {Estimates for convergence rate of an n-Ginzburg-Landau type minimizer},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {83},
number = {1},
year = {2007},
pages = { 83-87},
language = {en},
url = {http://dml.mathdoc.fr/item/1188405576}
}
Lei, Yutian. Estimates for convergence rate of an n-Ginzburg-Landau type minimizer. Proc. Japan Acad. Ser. A Math. Sci., Tome 83 (2007) no. 1, pp. 83-87. http://gdmltest.u-ga.fr/item/1188405576/