Following the introduction of separability in frames ([2]) we investigate further properties of this notion and establish some consequences of the Urysohn metrization theorem for frames that are frame counterparts of corresponding results in spaces. In particular we also show that regular subframes of compact metrizable frames are metrizable.
@article{118838, author = {Themba Dube}, title = {A short note on separable frames}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {375-377}, zbl = {0849.54012}, mrnumber = {1399008}, language = {en}, url = {http://dml.mathdoc.fr/item/118838} }
Dube, Themba. A short note on separable frames. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 375-377. http://gdmltest.u-ga.fr/item/118838/
Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Phil. Soc. 108 (1990), 63-78. (1990) | MR 1049760 | Zbl 0733.54020
Separability in locales, Quaest. Math. 17 (1994), 333-338. (1994) | MR 1290672 | Zbl 0816.54018
Stone Spaces, Cambridge Univ. Press, Cambridge, 1982. | MR 0698074 | Zbl 0586.54001
Remarks on metrizable locales, Suppl. Rend. Circ. Mat. Palermo 6 (1984), 247-258. (1984) | MR 0782722 | Zbl 0565.54001
On paracompact locales and metric locales, Comment. Math. Univ. Carolinae 30 (1989), 101-107. (1989) | MR 0995708 | Zbl 0691.06003