It follows from Stone Duality that Hochster's results on the relation between spectral spaces and prime spectra of rings translate into analogous, formally stronger results concerning coherent frames and frames of radical ideals of rings. Here, we show that the latter can actually be obtained without Stone Duality, proving them in Zermelo-Fraenkel set theory and thereby sharpening the original results of Hochster.
@article{118836, author = {Bernhard Banaschewski}, title = {Radical ideals and coherent frames}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {349-370}, zbl = {0853.06014}, mrnumber = {1399006}, language = {en}, url = {http://dml.mathdoc.fr/item/118836} }
Banaschewski, Bernhard. Radical ideals and coherent frames. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 349-370. http://gdmltest.u-ga.fr/item/118836/
Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. (1969) | MR 0251026 | Zbl 0184.29401
Krull implies Zorn, J. London Math. Soc. 19 (1979), 285-287. (1979) | MR 0533327 | Zbl 0394.03045
Stone Spaces, Cambridge University Press, Cambridge, 1982. | MR 0698074 | Zbl 0586.54001
A localic proof of Hochster's Theorem, unpublished draft, University of Cape Town, 1992.