We consider the property of relative compactness of subspaces of Hausdorff spaces. Several examples of relatively compact spaces are given. We prove that the property of being a relatively compact subspace of a Hausdorff spaces is strictly stronger than being a regular space and strictly weaker than being a Tychonoff space.
@article{118835, author = {Aleksander V. Arhangel'skii and Ivan V. Yashchenko}, title = {Relatively compact spaces and separation properties}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {343-348}, zbl = {0851.54024}, mrnumber = {1399005}, language = {en}, url = {http://dml.mathdoc.fr/item/118835} }
Arhangel'skii, Aleksander V.; Yashchenko, Ivan V. Relatively compact spaces and separation properties. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 343-348. http://gdmltest.u-ga.fr/item/118835/
Foundations of the theory of relative topological properties, General Topology. Spaces and mappings. MGU Moscow (1989), 3-48. (1989)
General Topology, (1987), PWN Warsawa. (1987)
Ordnugsfähigkeit total-diskontinuierlicher Räume, Math. Ann. 159 (1965), 77-80. (1965) | MR 0182944
Hereditary separable, non-completely regular spaces, Topology Conf., Virginia Polytechnic Inst. and State U. 1973, Springer Lecture Notes in Mathematics 375 (1974), 149-152. (1974) | MR 0413044
Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag (1988). (1988) | MR 0918341 | Zbl 0652.54016
On compactness modulo ideal, DAN SSSR (1972), 202 761-764. (1972) | MR 0296899