Set valued measures and integral representation
Xue, Xiao Ping ; Lixin, Cheng ; Li, Goucheng ; Yao, Xiao Bo
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 269-284 / Harvested from Czech Digital Mathematics Library

The extension theorem of bounded, weakly compact, convex set valued and weakly countably additive measures is established through a discussion of convexity, compactness and existence of selection of the set valued measures; meanwhile, a characterization is obtained for continuous, weakly compact and convex set valued measures which can be represented by Pettis-Aumann-type integral.

Publié le : 1996-01-01
Classification:  28A45,  28B20,  46G10
@article{118832,
     author = {Xiao Ping Xue and Cheng Lixin and Goucheng Li and Xiao Bo Yao},
     title = {Set valued measures and integral representation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {269-284},
     zbl = {0885.28008},
     mrnumber = {1399002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118832}
}
Xue, Xiao Ping; Lixin, Cheng; Li, Goucheng; Yao, Xiao Bo. Set valued measures and integral representation. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 269-284. http://gdmltest.u-ga.fr/item/118832/

Aumann R. Integrals of set-valued functions, J. Math. Appl. Anal. 12 (1965), 1-12. (1965) | MR 0185073 | Zbl 0163.06301

Artstein Z. Set-valued measures, Trans. Amer. Math. Soc. 165 (1972), 103-125. (1972) | MR 0293054 | Zbl 0237.28008

Amir D.; Lindenstrauss J. The structure of weakly compact sets in Banach spaces, Ann. Math. 88 (1968), 35-46. (1968) | MR 0228983 | Zbl 0164.14903

Castaing C.; Valadier M. Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, 1977. | MR 0467310 | Zbl 0346.46038

Diestel J.; Uhl J. Vector Measures, Amer. Math. Soc., no. 15, 1977. | MR 0453964 | Zbl 0521.46035

Hiai F.; Umegaki H. Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. (1977) | MR 0507504 | Zbl 0368.60006

Hiai F. Radon-Nikodym theorems for set-valued measures, J. Multivariate Anal. 8 (1978), 96-118. (1978) | MR 0583862 | Zbl 0384.28006

Ionescu-Tulcea A.; Ionescu-Tulcea C. Topics in the Theory of Lifting, Springer-Verlag, Berlin, 1969. | Zbl 0179.46303

Papageorgiou N. On the theory of Banach space valued multifunctions, J. Multivariate Anal. 17 (1985), 185-227. (1985) | MR 0808276 | Zbl 0579.28010

Papageorgiou N. Representation of set-valued operators, Trans. Amer. Math. Soc. 292 (1985), 557-572. (1985) | MR 0808737 | Zbl 0605.46037

Papageorgiou N. Contributions to the theory of set-valued functions and set-valued measures, Trans. Amer. Math. Soc. 304 (1987), 245-265. (1987) | MR 0906815 | Zbl 0634.28004

Uhl J. The range of vector-valued measure, Proc. Amer. Math. Soc 23 (1969), 158-163. (1969) | MR 0264029

Wilansky A. Modern Methods in Topological Vector Spaces, McGraw-Hill Inc., 1978. | MR 0518316 | Zbl 0395.46001