Let $X$ be a uniformly convex Banach space, $D\subset X$, $f:D\to X$ a nonexpansive map, and $K$ a closed bounded subset such that $\overline{\text{co}}\,K\subset D$. If (1) $f|_K$ is weakly inward and $K$ is star-shaped or (2) $f|_K$ satisfies the Leray-Schauder boundary condition, then $f$ has a fixed point in $\overline{\text{co}}\,K$. This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.
@article{118831, author = {Sehie Park}, title = {On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {263-268}, zbl = {0852.47029}, mrnumber = {1399001}, language = {en}, url = {http://dml.mathdoc.fr/item/118831} }
Park, Sehie. On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 263-268. http://gdmltest.u-ga.fr/item/118831/
A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci. 3 (1955), 409-413. (1955) | MR 0076308 | Zbl 0067.40802
Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math. 43 (1972), 553-562. (1972) | MR 0341459
Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. (1965) | MR 0177295 | Zbl 0135.17601
Semicontractions and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. (1968) | MR 0230179
Fixed point theorems for multivalued mappings in Banach spaces, Nonlinear Anal. TMA 17 (1991), 11-20. (1991) | MR 1113446 | Zbl 0765.47016
Fixed point theorems for non-expansive mappings on star-shaped subsets of Banach spaces, J. London Math. Soc. (2) 4 (1972), 408-410. (1972) | MR 0296778 | Zbl 0229.47047
Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mount. J. Math. 4 (1974), 69-79. (1974) | MR 0331136 | Zbl 0277.47034
A contribution to the theory of nonexpansive mappings, Bull. Calcutta Math. Soc. 70 (1978), 355-357. (1978) | MR 0584472 | Zbl 0437.47040
Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. (1965) | MR 0190718
Existence of fixed points of nonexpansive mappings satisfying the Rothe condition, J. Soviet Math. 26 (1984), 1607-1611. (1984) | Zbl 0538.47032
Fixed-point theorems for mappings defined on unbounded sets in Banach spaces, Studia Math. 64 (1979), 127-138. (1979) | MR 0537116 | Zbl 0412.47033
Ein Beweis des Fixpunktsatzes für $n$- dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. (1929)
New existence theorems for solutions of nonlinear integral equations, Dokl. Akad. Nauk SSSR 88 (1953), 949-952. (1953) | MR 0055578
A remark on weakly inward contractions, Nonlinear Anal. TMA 16 (1991), 847-848. (1991) | MR 1106372 | Zbl 0735.47032
Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. (1967) | MR 0211301 | Zbl 0179.19902
A new fixed point theorem and its application, Bull. Amer. Math. Soc. 78 (1972), 225-229. (1972) | MR 0291920 | Zbl 0231.47030
Zeros of accretive operators defined on unbounded sets, Houston J. Math. 5 (1979), 133-139. (1979) | MR 0533647 | Zbl 0412.47032
Neue Existenzsätze in der Theorie nichtlinearer Integralgleichungen, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 101 (1955), no.7, 40pp. (1955) | MR 0094672 | Zbl 0066.09001
A fixed point theorem and some applications, Arch. Rational Mech. Anal. 17 (1964), 255-271. (1964) | MR 0169068 | Zbl 0156.38502
Star-shaped sets and fixed points of multivalued mappings, Math. Japonica 36 (1991), 327-334. (1991) | MR 1095748 | Zbl 0752.47017