We extend Zajíček's theorem from [Za] about points of singlevaluedness of monotone operators on Asplund spaces. Namely we prove that every monotone operator on a subspace of a Banach space containing densely a continuous image of an Asplund space (these spaces are called GSG spaces) is singlevalued on the whole space except a $\sigma$-cone supported set.
@article{118830, author = {Martin Heisler}, title = {Singlevaluedness of monotone operators on subspaces of GSG spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {255-261}, zbl = {0849.47025}, mrnumber = {1399000}, language = {en}, url = {http://dml.mathdoc.fr/item/118830} }
Heisler, Martin. Singlevaluedness of monotone operators on subspaces of GSG spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 255-261. http://gdmltest.u-ga.fr/item/118830/
Dense strong continuity of mappings and the RadonNikodým property, Math. Scand. (1984), 54 70-78. (1984) | MR 0753064
Geometry of Banach Spaces - Selected Topics, Lecture Notes in Mathematics, vol. 485 Springer Verlag (1975). (1975) | MR 0461094 | Zbl 0307.46009
Weak Asplund Spaces, Lecture Notes (in preparation) (1995). (1995)
Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364 Springer Verlag (1989). (1989) | MR 0984602 | Zbl 0658.46035
The Radon-Nikodým property in conjugate Banach spaces II., Trans. Amer. Math. Soc. (1981), 264 507-519. (1981) | MR 0603779 | Zbl 0475.46016
Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces, Czech. Math. Journal 41 (116) (1991), 288-296. (1991) | MR 1105445