We prove that a Banach space admitting an equivalent WUR norm is an Asplund space. Some related dual renormings are also presented.
@article{118829, author = {Petr H\'ajek}, title = {Dual renormings of Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {241-253}, zbl = {0855.46005}, mrnumber = {1398999}, language = {en}, url = {http://dml.mathdoc.fr/item/118829} }
Hájek, Petr. Dual renormings of Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 241-253. http://gdmltest.u-ga.fr/item/118829/
Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64 (1993). | MR 1211634 | Zbl 0782.46019
Geometry of Banach Spaces-Selected Topics, Lecture Notes 485, SpringerVerlag, 1975. | MR 0461094 | Zbl 0466.46021
A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308. (1977) | MR 0442651 | Zbl 0387.46015
A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. USA 37 (1951), 174-177. (1951) | MR 0044024
A separable somewhat reflexive space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. (1974) | MR 0417763
Examples of separable spaces which do not contain $\ell_1$ and whose duals are non-separable, Studia Math. 54 (1975), 81-105. (1975) | MR 0390720 | Zbl 0324.46017
Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, 1977. | MR 0500056 | Zbl 0362.46013
On Banach spaces containing $L_1(\mu)$, Studia Math. 30 (1968), 231-246. (1968) | MR 0232195
On the problem of non-smoothness of non-reflexive second conjugate spaces, Bull. Austral. Math. Soc. 12 (1975), 407-416. (1975) | MR 0383049 | Zbl 0299.46017
The Radon-Nikodym property in conjugate Banach spaces, ibid. 206 (1975), 213-223. (1975) | MR 0374381 | Zbl 0318.46056