In the paper [5] L. Drewnowski and the author proved that if $X$ is a Banach space containing a copy of $c_0$ then $L_1({\mu },X)$ is {\it not} complemented in $cabv({\mu },X)$ and conjectured that the same result is true if $X$ is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if $\mu$ is a finite measure and $X$ is a Banach lattice not containing copies of $c_0$, then $L_1({\mu },X)$ is complemented in $cabv({\mu },X)$. Here, we show that the complementability of $L_1({\mu },X)$ in $cabv({\mu },X)$ together with that one of $X$ in the bidual $X^{\ast\ast}$ is equivalent to the complementability of $L_1({\mu },X)$ in its bidual, so obtaining that for certain families of Banach spaces not containing $c_0$ complementability occurs (Section 2), thanks to the existence of general results stating that a space in one of those families is complemented in the bidual. We shall also prove that certain quotient spaces inherit that property (Section 3).
@article{118827, author = {Giovanni Emmanuele}, title = {Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {217-228}, zbl = {0855.46006}, mrnumber = {1398997}, language = {en}, url = {http://dml.mathdoc.fr/item/118827} }
Emmanuele, Giovanni. Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 217-228. http://gdmltest.u-ga.fr/item/118827/
A construction of ${\Cal L}_\infty$-spaces and related Banach spaces, Bol. Soc. Bras. Mat. 14.2 (1983), 109-123. (1983) | MR 0756904
The dual of a space of vector measures, Math. Z. 180 (1982), 373-378. (1982) | MR 0664522 | Zbl 0471.46016
Vector Measures, Pergamon Press, New York, 1967. | MR 0206190 | Zbl 0647.60062
Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977. | MR 0453964 | Zbl 0521.46035
The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$, Studia Math. 104.2 (1993), 111-123. (1993) | MR 1211812
Linear Operators, part I, Intersciences, New York and London, 1958. | MR 0117523 | Zbl 0635.47001
Linear projections from a space of measures onto its Bochner integrable functions subspace, preprint, 1993.
Martingales, $G_\delta$-embeddings and quotients of $L_1$, Math. Annalen 264 (1983), 321-332. (1983) | MR 0714107 | Zbl 0511.46017
Measure Theory, GTM 18, Springer Verlag, New York, Berlin, Heidelberg, 1974. | Zbl 0283.28001
M-ideals in Banach spaces and Banach algebras, LNM 1547, Springer Verlag, New York, Berlin, Heidelberg, 1994. | MR 1238713 | Zbl 0789.46011
Remarks on Banach spaces of compact operators, J. Funct. Analysis 32.3 (1979), 304-311. (1979) | MR 0538857 | Zbl 0412.47024
On Banach spaces containing $c_0$, Studia Math. 52 (1974), 187-188. (1974) | MR 0356156 | Zbl 0295.60003
Classical Banach Spaces, II, Function Spaces, EMG 97, Springer Verlag, New York, Berlin, Heidelberg, 1979. | MR 0540367 | Zbl 0403.46022
A note on Banach spaces containing $l_1$, Canad. Math. Bull. 19 (1976), 365-367. (1976) | MR 0430748
Martingales of Pettis integrable functions, in Measure Theory, Oberwolfach 1979, LNM 794, Springer Verlag, New York, Berlin, Heidelberg 1980. | MR 0577981 | Zbl 0433.28010
Banach spaces of Analytic Functions and Absolutely Summing Operators, CBMS 30, Amer. Math. Soc., Providence, Rhode Island, 1977. | MR 0511811 | Zbl 0475.46022
$L^1(\lambda,E)$ as a constrained subspace of its bidual, Indian Statistical Institute, Tech. Report, 1988.
Intersection properties of balls in tensor products of some Banach spaces, Math. Scand. 65 (1989), 103-118. (1989) | MR 1051827 | Zbl 0675.46007
A note on the $R_{n,k}$ property for $L_1(\mu)$, Canad. Math. Bull. 32 (1989), 74-77. (1989) | MR 0996125
Intersection properties of balls in tensor products of some Banach spaces - II, Indian J. Pure Appl. Math. 21 (1990), 275-284. (1990) | MR 1044265 | Zbl 0706.46019
C$^\ast$-Algebras and W$^\ast$-Algebras, EMG 60, Springer Verlag, 1971. | MR 0442701 | Zbl 1153.37316
Banach lattices and positive operators, GMW 215, Springer Verlag, New York, Berlin, Heidelberg, 1974. | MR 0423039 | Zbl 0296.47023
Banach lattices of Lebesgue-Bochner function spaces and conditional expectation operators, I, Bull. Acad. Sinica 2.2 (1974), 165-184. (1974) | MR 0355584 | Zbl 0307.46025
Theory of operator algebras, I, Springer Verlag, 1979. | MR 0548728 | Zbl 0990.46034
A characterization of weakly sequentially complete Banach lattices, Math. Z. 190 (1985), 379-385. (1985) | MR 0806896 | Zbl 0587.46019