Vector-valued sequence space $BMC(X)$ and its properties
Bu, Qing-Ying
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 207-216 / Harvested from Czech Digital Mathematics Library

In this paper, a vector topology is introduced in the vector-valued sequence space $\text{\it BMC}\,(X)$ and convergence of sequences and sequentially compact sets in $\text{\it BMC}\,(X)$ are characterized.

Publié le : 1996-01-01
Classification:  40A05,  46A05,  46A45,  46E40
@article{118826,
     author = {Qing-Ying Bu},
     title = {Vector-valued sequence space $BMC(X)$ and its properties},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {207-216},
     zbl = {0852.46006},
     mrnumber = {1398996},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118826}
}
Bu, Qing-Ying. Vector-valued sequence space $BMC(X)$ and its properties. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 207-216. http://gdmltest.u-ga.fr/item/118826/

Bu Q.Y. Orlicz-Pettis type theorem for compact operators, Chinese Ann. of Math. 17A:1 (1996), 79-86. (1996) | Zbl 0923.46007

Li R.L.; Bu Q.Y. Locally convex spaces containing no copy of $c_0$, J. Math. Anal. Appl. 172:1 (1993), 205-211. (1993) | MR 1199505

Li R.L.; Swartz C. Spaces for which the uniform boundedness principle holds, Studia Sci. Math. Hungar. 27 (1992), 379-384. (1992) | MR 1218160 | Zbl 0681.46001

Pietsch A. Nuclear Locally Convex Spaces, Springer-Verlag, Berlin, 1972. | MR 0350360 | Zbl 0308.47024

Wilansky A. Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. | MR 0518316 | Zbl 0395.46001