In this paper, a vector topology is introduced in the vector-valued sequence space $\text{\it BMC}\,(X)$ and convergence of sequences and sequentially compact sets in $\text{\it BMC}\,(X)$ are characterized.
@article{118826, author = {Qing-Ying Bu}, title = {Vector-valued sequence space $BMC(X)$ and its properties}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {207-216}, zbl = {0852.46006}, mrnumber = {1398996}, language = {en}, url = {http://dml.mathdoc.fr/item/118826} }
Bu, Qing-Ying. Vector-valued sequence space $BMC(X)$ and its properties. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 207-216. http://gdmltest.u-ga.fr/item/118826/
Orlicz-Pettis type theorem for compact operators, Chinese Ann. of Math. 17A:1 (1996), 79-86. (1996) | Zbl 0923.46007
Locally convex spaces containing no copy of $c_0$, J. Math. Anal. Appl. 172:1 (1993), 205-211. (1993) | MR 1199505
Spaces for which the uniform boundedness principle holds, Studia Sci. Math. Hungar. 27 (1992), 379-384. (1992) | MR 1218160 | Zbl 0681.46001
Nuclear Locally Convex Spaces, Springer-Verlag, Berlin, 1972. | MR 0350360 | Zbl 0308.47024
Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. | MR 0518316 | Zbl 0395.46001