Indiscernibles and dimensional compactness
Henson, C. Ward ; Zlatoš, Pavol
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 199-203 / Harvested from Czech Digital Mathematics Library

This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set $u S\subseteq G$ in a biequivalence vector space $\langle W,M,G\rangle$, such that $x - y \notin M$ for distinct $x,y \in u$, contains an infinite independent subset. Consequently, a class $X \subseteq G$ is dimensionally compact iff the $\pi$-equivalence $\doteq_M$ is compact on $X$. This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.

Publié le : 1996-01-01
Classification:  03H05,  46A99,  46S10,  46S20
@article{118823,
     author = {C. Ward Henson and Pavol Zlato\v s},
     title = {Indiscernibles and dimensional compactness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {199-203},
     zbl = {0851.46052},
     mrnumber = {1396171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118823}
}
Henson, C. Ward; Zlatoš, Pavol. Indiscernibles and dimensional compactness. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 199-203. http://gdmltest.u-ga.fr/item/118823/

Guričan J.; Zlatoš P. Biequivalences and topology in the alternative set theory, Comment. Math. Univ. Carolinae 26.3 525-552. | MR 0817825

Náter J.; Pulmann P.; Zlatoš P. Dimensional compactness in biequivalence vector spaces, Comment. Math. Univ. Carolinae 33.4 681-688. | MR 1240189

Šmíd M.; Zlatoš P. Biequivalence vector spaces in the alternative set theory, Comment. Math. Univ. Carolinae 32.3 517-544. | MR 1159799

Sochor A.; Vencovská A. Indiscernibles in the alternative set theory, Comment. Math. Univ. Carolinae 22.4 785-798. | MR 0647026

Vopěnka P. Mathematics in the Alternative Set Theory, Teubner-Verlag Leipzig. | MR 0581368