This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set $u S\subseteq G$ in a biequivalence vector space $\langle W,M,G\rangle$, such that $x - y \notin M$ for distinct $x,y \in u$, contains an infinite independent subset. Consequently, a class $X \subseteq G$ is dimensionally compact iff the $\pi$-equivalence $\doteq_M$ is compact on $X$. This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.
@article{118823, author = {C. Ward Henson and Pavol Zlato\v s}, title = {Indiscernibles and dimensional compactness}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {199-203}, zbl = {0851.46052}, mrnumber = {1396171}, language = {en}, url = {http://dml.mathdoc.fr/item/118823} }
Henson, C. Ward; Zlatoš, Pavol. Indiscernibles and dimensional compactness. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 199-203. http://gdmltest.u-ga.fr/item/118823/
Biequivalences and topology in the alternative set theory, Comment. Math. Univ. Carolinae 26.3 525-552. | MR 0817825
Dimensional compactness in biequivalence vector spaces, Comment. Math. Univ. Carolinae 33.4 681-688. | MR 1240189
Biequivalence vector spaces in the alternative set theory, Comment. Math. Univ. Carolinae 32.3 517-544. | MR 1159799
Indiscernibles in the alternative set theory, Comment. Math. Univ. Carolinae 22.4 785-798. | MR 0647026
Mathematics in the Alternative Set Theory, Teubner-Verlag Leipzig. | MR 0581368