Short proofs of the fact that the limit space of a non-gauged approximate system of non-empty compact uniform spaces is non-empty and of two related results are given.
@article{118819, author = {Michael G. Charalambous}, title = {A note on the non-emptiness of the limit of approximate systems}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {155-157}, zbl = {0855.54016}, mrnumber = {1396167}, language = {en}, url = {http://dml.mathdoc.fr/item/118819} }
Charalambous, Michael G. A note on the non-emptiness of the limit of approximate systems. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 155-157. http://gdmltest.u-ga.fr/item/118819/
Approximate inverse systems of uniform spaces and an application of inverse systems, Comment. Math. Univ. Carolinae 32 (1991), 551-565. (1991) | MR 1159801 | Zbl 0785.54016
On approximate inverse systems and resolutions, Fund. Math. 142 (1993), 241-255. (1993) | MR 1220551
Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 138 (1989), 129-144. (1989) | MR 0992178
$\Cal P$-like continua and approximate inverse systems, Math. Japonica 33 (1988), 895-908. (1988) | MR 0975869
Approximate resolutions of spaces and mappings, Glas. Mat. 24 (1989), 583-633. (1989) | MR 1080085