Let $X$ be a locally convex space, $m: \Sigma \to X$ be a vector measure defined on a $\sigma$-algebra $\Sigma$, and $L^1(m)$ be the associated (locally convex) space of $m$-integrable functions. Let $\Sigma(m)$ denote $\{\chi_{{}_{E}}; E\in \Sigma\}$, equipped with the relative topology from $L^1(m)$. For a subalgebra $\Cal A \subseteq \Sigma$, let $\Cal A_\sigma$ denote the generated $\sigma$-algebra and $\overline{\Cal A}_s$ denote the {\sl sequential\/} closure of $\chi(\Cal A) = \{\chi_{{}_{E}}; E\in \Cal A\}$ in $L^1(m)$. Sets of the form $\overline{\Cal A}_s$ arise in criteria determining separability of $L^1(m)$; see [6]. We consider some natural questions concerning $\overline{\Cal A}_s$ and, in particular, its relation to $\chi(\Cal A_\sigma)$. It is shown that $\overline{\Cal A}_s \subseteq \Sigma (m)$ and moreover, that $\{E\in \Sigma; \chi_{{}_{E}} \in \overline{\Cal A}_s\}$ is always a $\sigma$-algebra and contains $\Cal A_\sigma$. Some properties of $X$ are determined which ensure that $\chi(\Cal A_\sigma) = \overline{\Cal A}_s$, for any $X$-valued measure $m$ and subalgebra $\Cal A \subseteq \Sigma$; the class of such spaces $X$ turns out to be quite extensive.
@article{118814, author = {Werner J. Ricker}, title = {Sequential closures of $\sigma$-subalgebras for a vector measure}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {91-97}, zbl = {0877.28011}, mrnumber = {1396162}, language = {en}, url = {http://dml.mathdoc.fr/item/118814} }
Ricker, Werner J. Sequential closures of $\sigma$-subalgebras for a vector measure. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 91-97. http://gdmltest.u-ga.fr/item/118814/
Topologie générale. II (Nouvelle Édition), Chapitres 5 à 10, Herman, Paris, 1974.
Linear operators III; spectral operators, Wiley-Interscience, New York, 1972. | MR 1009164
Weakly compact sets, Lecture Notes in Math., Vol.801, Springer-Verlag, Berlin and New York, 1980. | MR 0576235 | Zbl 0437.46006
Vector measures and control systems, North Holland, Amsterdam, 1976. | MR 0499068
Criteria for closedness of vector measures, Proc. Amer. Math. Soc. 91 (1984), 75-80. (1984) | MR 0735568 | Zbl 0544.28005
Separability of the $L^1$-space of a vector measure, Glasgow Math. J. 34 (1992), 1-9. (1992) | MR 1145625
Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, Bombay, 1973. | MR 0426084 | Zbl 0298.28001
Integration of functions in locally convex Suslin spaces, Trans. Amer. Math. Soc. 212 (1975), 61-81. (1975) | MR 0385067