Let $u$ be a weak solution of a quasilinear elliptic equation of the growth $p$ with a measure right hand term $\mu$. We estimate $u(z)$ at an interior point $z$ of the domain $\Omega$, or an irregular boundary point $z\in \partial\Omega$, in terms of a norm of $u$, a nonlinear potential of $\mu$ and the Wiener integral of $\bold R^n\setminus \Omega$. This quantifies the result on necessity of the Wiener criterion.
@article{118812, author = {Jan Mal\'y}, title = {Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {37}, year = {1996}, pages = {23-42}, zbl = {0851.35047}, mrnumber = {1396160}, language = {en}, url = {http://dml.mathdoc.fr/item/118812} }
Malý, Jan. Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 23-42. http://gdmltest.u-ga.fr/item/118812/
$L^p$ potential theory techniques and nonlinear PDE, In: Potential Theory (Ed. M. Kishi) Walter de Gruyter & Co Berlin (1992), 1-15. (1992) | MR 1167217 | Zbl 0760.22013
Function Spaces and Potential Theory, Springer Verlag Berlin (1995). (1995) | MR 1411441 | Zbl 0834.46021
Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972), 169-197. (1972) | MR 0316724 | Zbl 0244.31012
On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer ({1971}). ({1971}) | MR 0281940 | Zbl 0222.31014
The Lebesgue set of a function whose partial derivatives are $p$-th power summable, Indiana Univ. Math. J. 22 (1972), 139-158. (1972) | MR 0435361
Capacity methods in the theory of partial differential equations, Jahresber. Deutsch. Math. Verein. 84 (1982), 1-44. (1982) | MR 0644068 | Zbl 0486.35002
The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier Grenoble 21.1 (1971), 123-169. (1971) | MR 0283158 | Zbl 0197.19401
A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal. 67 (1977), 25-39. (1977) | MR 0492836 | Zbl 0389.35023
Nonlinear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299-319. (1972) | MR 0328088
Thin sets in nonlinear potential theory, Ann. Inst. Fourier 33.4 (1983), 161-187. (1983) | MR 0727526 | Zbl 0508.31008
On the Wiener criterion and quasilinear obstacle problems, Trans. Amer. Math. Soc. 310 (1988), 239-255. (1988) | MR 0965751
Fine topology and quasilinear elliptic equations, Ann. Inst. Fourier 39.2 (1989), 293-318. (1989) | MR 1017281
Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford (1993). (1993) | MR 1207810
Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa. Cl. Science, Ser. IV 19 (1992), 591-613. (1992) | MR 1205885
Supersolutions to degenerate elliptic equations on quasi open sets, Comm. Partial Differential Equations 17 (1992), 371-405. (1992) | MR 1163430
The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161. (1994) | MR 1264000
Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations with right hand side a measure, Comm. Partial Differential Equations 18 (1993), 1991-2112. (1993) | MR 1233190
Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), 153-171. (1985) | MR 0806413 | Zbl 0607.35042
Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa. Serie III 17 (1963), 43-77. (1963) | MR 0161019 | Zbl 0116.30302
Nonlinear potentials and quasilinear PDE's, Proceedings of the International Conference on Potential Theory, Kouty, 1994, to appear. | MR 1404703 | Zbl 0857.35046
On the continuity at a boundary point of solutions of quasi-linear elliptic equations (Russian), Vestnik Leningrad. Univ. 25 42-55 English translation Vestnik Leningrad. Univ. Math. 3 (1976), 225-242. (1976) | MR 0274948
Nonlinear potential theory (Russian), Uspekhi Mat. Nauk 27.6 (1972), 67-138 English translation Russian Math. Surveys 27 (1972), 71-148. (1972)
Fine Regularity of Solutions of Elliptic Equations, book in preparation.
Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. (1975) | MR 0367235 | Zbl 0334.31004
Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc. 319 (1990), 747-764. (1990) | MR 0998128 | Zbl 0708.35023
Nonlinear Elliptic Boundary Value Problems, Teubner Verlag, Leipzig (1986). (1986) | MR 0915342 | Zbl 0617.35001
On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. (1967) | MR 0226198 | Zbl 0153.42703
Certain notions in potential theory, J. Math. Phys. 3 (1924), 24-5 Reprinted in: Norbert Wiener: Collected works. Vol. 1 (1976), MIT Press, pp. 364-391. (1924) | MR 0532698