On nodal radial solutions of an elliptic problem involving critical Sobolev exponent
Chabrowski, Jan H.
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996), p. 1-16 / Harvested from Czech Digital Mathematics Library

In this paper we construct radial solutions of equation (1) (and (13)) having prescribed number of nodes.

Publié le : 1996-01-01
Classification:  35B05,  35J20,  35J60
@article{118810,
     author = {Jan H. Chabrowski},
     title = {On nodal radial solutions of an elliptic problem involving critical Sobolev exponent},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {37},
     year = {1996},
     pages = {1-16},
     zbl = {0853.35033},
     mrnumber = {1396158},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118810}
}
Chabrowski, Jan H. On nodal radial solutions of an elliptic problem involving critical Sobolev exponent. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) pp. 1-16. http://gdmltest.u-ga.fr/item/118810/

Adimurthi Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa 12.1 (1990), 393-413. (1990) | MR 1079983 | Zbl 0732.35028

Ambrosetti A.; Rabinowitz P.H. Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. (1973) | MR 0370183 | Zbl 0273.49063

Bartsch Th.; Willem M. Infinitely many radial solutions of a semilinear elliptic problem on $\Bbb R^N$, Arch. Rat. Mech. Anal. 124 (1993), 261-274. (1993) | MR 1237913

Bianchi G.; Chabrowski J.; Szulkin A. On symmetric solutions of an elliptic equation involving critical Sobolev exponent, Nonlinear Analysis, TMA 25(1) (1995), 41-59. (1995) | MR 1331987

Ladyzhenskaya O.A.; Ural'Ceva O.A. Linear and Quasilinear Elliptic Equations, Academic Press New York (1968). (1968) | MR 0244627

Lions P.L. Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315-334. (1982) | MR 0683027 | Zbl 0501.46032

Yi Li; Wei-Ming Ni On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\Bbb R^n$, I Asymptotic behavior, II Radial symmetry, Arch. Rat. Mech. Anal. 118 (1992), 195-222, 223-243. (1992) | MR 1158935

Rother W. Some existence results for the equation $\Delta U+K(x)U^p=0$, Commun. in P.D.E. 15.10 (1990), 1461-1473. (1990) | MR 1077474

Stuart C.A. Bifurcation in $L^p(\Bbb R^N)$ for a semilinear elliptic equations, Proc. London Math. Soc. 57(3) (1988), 511-541. (1988) | MR 0960098 | Zbl 0673.35005

Talenti G. Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. (1976) | MR 0463908

Vainberg M.M. Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley & Sons New York-Toronto (1973). (1973) | MR 0467428 | Zbl 0279.47022