On the sequence of integer parts of a good sequence for the ergodic theorem
Lesigne, Emmanuel
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 737-743 / Harvested from Czech Digital Mathematics Library

If $(u_n)$ is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts $([u_n])$ good for the ergodic theorem\,? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.

Publié le : 1995-01-01
Classification:  28D10,  40A30,  60F25
@article{118801,
     author = {Emmanuel Lesigne},
     title = {On the sequence of integer parts of a good sequence for the ergodic theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {737-743},
     zbl = {0868.28010},
     mrnumber = {1378695},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118801}
}
Lesigne, Emmanuel. On the sequence of integer parts of a good sequence for the ergodic theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 737-743. http://gdmltest.u-ga.fr/item/118801/

Bergelson V.; Boshernitzan M.; Bourgain J. Some results on non-linear recurrence, J. d'Analyse Math. 62 (1994), 29-46. (1994) | MR 1269198

Boshernitzan M.; Jones R.; Wierdl M. Integer and fractional parts of good averaging sequences in ergodic theory, preprint, 1994. | MR 1412600 | Zbl 0865.28011

Bourgain J. Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79-97. (1988) | MR 0959049 | Zbl 0677.60042

Garsia A. Topics in Almost Everywhere Convergence, Lectures in Advanced Mathematics 4, 1970. | MR 0261253 | Zbl 0198.38401