Every aperiodic endomorphism $f$ of a nonatomic Lebesgue space which possesses a finite 1-sided generator has a 1-sided generator $\beta $ such that $k_f\leq \operatorname{card}\, \beta \leq k_f+1$. This is the best estimate for the minimal cardinality of a 1-sided generator. The above result is the generalization of the analogous one for ergodic case.
@article{118799, author = {Zbigniew S. Kowalski}, title = {Minimal generators for aperiodic endomorphisms}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {721-725}, zbl = {0840.28006}, mrnumber = {1378693}, language = {en}, url = {http://dml.mathdoc.fr/item/118799} }
Kowalski, Zbigniew S. Minimal generators for aperiodic endomorphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 721-725. http://gdmltest.u-ga.fr/item/118799/
Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976. | MR 0457675 | Zbl 0328.28008
Minimal generators for ergodic endomorphisms, Studia Mathematica 16 (1988), 85-88. (1988) | MR 0985076 | Zbl 0676.28009
Entropy and Generators in Ergodic Theory, Benjamin, 1969. | MR 0262464 | Zbl 0175.34001
On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. Ser. 1 10 (1962), 1-54 Mat. Sb. 25 (1949), 107-150. (1949) | MR 0030584
Some results on the classification of non-invertible measure preserving transformations, in: Recent Advances in Topological Dynamics, Lecture Notes in Math. 318, Springer, 1972, pp. 266-276. | MR 0393424 | Zbl 0257.28011