Applications of the spectral radius to some integral equations
Zima, Mirosława
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 695-703 / Harvested from Czech Digital Mathematics Library

In the paper [13] we proved a fixed point theorem for an operator $\Cal A$, which satisfies a generalized Lipschitz condition with respect to a linear bounded operator $A$, that is: $$ m(\Cal A x-\Cal A y)\prec Am(x-y). $$ The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator $A$.

Publié le : 1995-01-01
Classification:  34K10,  45G10,  47G10,  47H07,  47H10,  47J10
@article{118796,
     author = {Miros\l awa Zima},
     title = {Applications of the spectral radius to some integral equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {695-703},
     zbl = {0845.47047},
     mrnumber = {1378690},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118796}
}
Zima, Mirosława. Applications of the spectral radius to some integral equations. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 695-703. http://gdmltest.u-ga.fr/item/118796/

Bainov D.D.; Mishev D.P. Oscillation theory for neutral differential equations with delay, Adam Hilger, Bristol Philadelphia New York, 1991. | MR 1147908 | Zbl 0747.34037

Förster K.-H.; Nagy B. On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 (1991), 155-166. (1991) | MR 1124954

Hristova S.G.; Bainov D.D. Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with ``supremum'', J. Math. Anal. Appl. 172 (1993), 339-352. (1993) | MR 1200990 | Zbl 0772.34047

Krasnoselski M.A. Et Al. Näherungsverfahren zur Lösung von Operatorgleichungen, Akademie Verlag, Berlin, 1973. | Zbl 0269.65001

Kwapisz M. On the existence and uniqueness of solutions of a certain integral-functional equation, Ann. Polon. Math. 31 (1975), 23-41. (1975) | MR 0380329

Myshkis A.D. On some problems of the theory of differential equations with deviating argument (in Russian), Uspehi Mat. Nauk 32 (1977), 173-202. (1977) | MR 0492443

Riesz F.; Sz.-Nagy B. Functional analysis, Ungar, New York, 1955. | MR 0071727 | Zbl 0732.47001

Waẓewski T. Sur un procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison, Bull. Acad. Polon. Sci. 1 (1960), 45-52. (1960) | MR 0126109

Zabrejko P.P. The contraction mapping principle in $K$-metric and locally convex spaces (in Russian), Dokl. Akad. Nauk BSSR 34 (1990), 1065-1068. (1990) | MR 1095667

Zabrejko P.P.; Krasnoselski M.A.; Stecenko V.Ya. On estimations of the spectral radius of the linear positive operators (in Russian), Mat. Zametki 1 (1967), 461-470. (1967) | MR 0208390

Zabrejko P.P.; Makarevich T.A. On some generalization of the Banach-Caccioppoli principle to operators in pseudometric spaces (in Russian), Diff. Uravn. 23 (1987), 1497-1504. (1987) | MR 0911361

Zeidler E. Nonlinear functional analysis and its applications I, Springer Verlag, New York Heidelberg Berlin, 1993. | MR 0816732 | Zbl 0583.47050

Zima M. A certain fixed point theorem and its applications to integral-functional equations, Bull. Austral. Math. Soc. 46 (1992), 179-186. (1992) | MR 1183775 | Zbl 0761.34048

Zima M. A theorem on the spectral radius of the sum of two operators and its application, Bull. Austral. Math. Soc. 48 (1993), 427-434. (1993) | MR 1248046 | Zbl 0795.34069