We consider the nonlinear eigenvalue problem $$ -\operatorname{div}(|{\nabla} u|^{p-2}{\nabla} u)=\lambda g(x)|u|^{p-2}u $$ in $\boldkey R^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in ${W^{1, p}(\boldkey R^N)}$. A nonexistence result is also given for the case $p\geq N$.
@article{118781, author = {Yin Xi Huang}, title = {Eigenvalues of the $p$-Laplacian in ${\boldkey R}^N$ with indefinite weight}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {519-527}, zbl = {0839.35097}, mrnumber = {1364493}, language = {en}, url = {http://dml.mathdoc.fr/item/118781} }
Huang, Yin Xi. Eigenvalues of the $p$-Laplacian in ${\boldkey R}^N$ with indefinite weight. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 519-527. http://gdmltest.u-ga.fr/item/118781/
Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C.R. Acad. Sci. Paris 305 I (1987), 725-728. (1987) | MR 0920052 | Zbl 0633.35061
Existence and uniqueness for the $p$-Laplacian: nonlinear eigenvalues, Comm. PDE 12 (1987), 1389-1430. (1987) | MR 0912211
Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151. (1979) | MR 0539217 | Zbl 0408.35025
Principal eigenvalues for problems with indefinite weight functions on $\pmb R^N$, Proc. Amer. Math. Soc. 109 (1990), 147-156. (1990) | MR 1007489
Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics, J. Math. Biol. 27 (1989), 91-104. (1989) | MR 0984228 | Zbl 0714.92011
Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, N.Y., 1983. | MR 0737190 | Zbl 1042.35002
On eigenvalue problems of the $p$-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184. (1990) | MR 1010800 | Zbl 0715.35061
The existence of solutions to a class of semilinear differential equations, Diff. Int. Equa., to appear. | MR 1296134 | Zbl 0818.34013
Smoothness of certain degenerate elliptic equations, Proc. Amer. Math. Soc. 80 (1980), 259-265. (1980) | MR 0577755 | Zbl 0455.35064
Eigenvalue problems for quasilinear elliptic equations in $\pmb R^N$, Comm. PDE 14 (1989), 1291-1314. (1989) | MR 1017074
On the equation ${div} (|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}|u=0$, Proc. Amer. Math. Soc. 109 (1990), 157-164. (1990) | MR 1007505 | Zbl 0714.35029
On the first eigenvalue of some quasilinear elliptic equations, Proc. Japan Acad. Ser. A 64 (1988), 8-10. (1988) | MR 0953752 | Zbl 0662.35080
Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. (1964) | MR 0170096
Variational Methods, Springer-Verlag, Berlin, 1990. | MR 1078018
Ljusternik-Schnirelmann theory on $C^1$-manifolds, Ann. Inst. Henri Poincaré, Anal. Nonl. 5 (1988), 119-139. (1988) | MR 0954468
On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. PDE 8 (1983), 773-817. (1983) | MR 0700735 | Zbl 0515.35024
On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. (1967) | MR 0226198 | Zbl 0153.42703