We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral.
@article{118774, author = {B. Bongiorno and Luisa Di Piazza and Washek Frank Pfeffer}, title = {A full descriptive definition of the BV-integral}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {461-469}, zbl = {0842.26009}, mrnumber = {1364486}, language = {en}, url = {http://dml.mathdoc.fr/item/118774} }
Bongiorno, B.; Di Piazza, Luisa; Pfeffer, Washek Frank. A full descriptive definition of the BV-integral. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 461-469. http://gdmltest.u-ga.fr/item/118774/
Differentiation of set functions, Rend. Circ. Mat. Palermo 26 37-51 (1977). (1977) | MR 0524331 | Zbl 0399.28003
Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. | MR 1158660 | Zbl 0804.28001
Equi-integrability and controlled convergence of Perron-type integrable functions, Real Anal. Ex. 17 110-139 (1991:92). (1991:92) | MR 1147361
A descriptive definition of a variational integral and applications, Indiana Univ. Math. J. 40 259-270 (1991). (1991) | MR 1101229 | Zbl 0747.26010
The Gauss-Green theorem, Adv. Math. 87 93-147 (1991). (1991) | MR 1102966 | Zbl 0732.26013
The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993. | MR 1268404 | Zbl 1143.26005
Theory of the Integral, Dover, New York, 1964. | MR 0167578 | Zbl 0017.30004
The spaces BV and quasilinear equations, Math. USSR-SB. 2 255-267 (1967). (1967) | MR 0216338