Let $Y \subset l^{(n)}_{\infty }$ be a hyperplane and let $A \in {\Cal L}(Y)$ be given. Denote $$ \align {\Cal A} = & \{L\in {\Cal L}(l^{(n)}_{\infty },Y):L\mid Y = A\} \text{ and} \ & \lambda_{A} = \inf \{\parallel L \parallel : L\in {\Cal A}\}. \endalign $$ In this paper the problem of calculating of the constant $\lambda_{A}$ is studied. We present a complete characterization of those $A \in {\Cal L}(Y)$ for which $\lambda_{A} = \parallel A \parallel $. Next we consider the case $\lambda_{A} > \parallel A \parallel $. Finally some computer examples will be presented.
@article{118772, author = {Marco Baronti and Vito Fragnelli and Grzegorz Lewicki}, title = {Extensions of linear operators from hyperplanes of $l^{(n)}\_\infty$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {443-458}, zbl = {0831.41014}, mrnumber = {1364484}, language = {en}, url = {http://dml.mathdoc.fr/item/118772} }
Baronti, Marco; Fragnelli, Vito; Lewicki, Grzegorz. Extensions of linear operators from hyperplanes of $l^{(n)}_\infty$. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 443-458. http://gdmltest.u-ga.fr/item/118772/
Norm one projections onto subspaces of $l^p$, Ann. Mat. Pura Appl. IV (1988), 53-61. (1988) | MR 0980971
Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl. 101 (1974), 215-227. (1974) | MR 0358179
Weak compactness in spaces of compact operators and vector valued functions, Pacific J. Math. 106 (1983), 45-71. (1983) | MR 0694671
Minimal Projections in Banach Spaces, Lecture Notes in Math. 1449, Springer-Verlag. | MR 1079547 | Zbl 1062.46500
On the extension of continuous linear functionals..., Math. Ann. 159 (1965), 344-355. (1965) | MR 0188758 | Zbl 0141.12002
Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1970. | MR 0270044 | Zbl 0197.38601
Some remarks on strong uniqueness of best approximation, Approximation Theory and its Applications 6 (1990), 44-78. (1990) | MR 1078687 | Zbl 0704.41016