We prove: If $$ \frac 12+\sum_{k=1}^{n}a_k(n)\cos (kx)\geq 0 \text{ for all } x\in [0,2\pi ), $$ then $$ 1-a_k(n)\geq \frac 12 \frac{k^2}{n^2} \text{ for } k=1,\dots ,n. $$ The constant $1/2$ is the best possible.
@article{118770, author = {Horst Alzer}, title = {An inequality for the coefficients of a cosine polynomial}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {427-428}, zbl = {0833.26012}, mrnumber = {1364482}, language = {en}, url = {http://dml.mathdoc.fr/item/118770} }
Alzer, Horst. An inequality for the coefficients of a cosine polynomial. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 427-428. http://gdmltest.u-ga.fr/item/118770/
Saturation of positive convolution operators, J. Approx. Th. 3 (1970), 410-429. (1970) | MR 0271612 | Zbl 0243.42024
Über trigonometrische singuläre Faltungsintegrale mit Kernen endlicher Oszillation, Dissertation, TH Aachen, 1970.
Inequalities for trigonometric moments and for Fourier coefficients of positive cosine polynomials in approximation, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 63-76. (1976) | MR 0438017
Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen, Math. Annalen 96 (1926-27), 601-632. (1926-27)