We consider a commutative ring $\operatorname R$ with identity and a positive integer $\operatorname N$. We characterize all the 3-tuples $(\operatorname L_1,\operatorname L_2,\operatorname L_3)$ of linear transforms over $\operatorname R^{\operatorname N}$, having the ``circular convolution'' pro\-perty, i.e\. such that $x\ast y=\operatorname L_3(\operatorname L_1 (x)\otimes \operatorname L_2 (y))$ for all $x,y \in \operatorname R^{\operatorname N}$.
@article{118765, author = {Mohamed Mounir Nessibi}, title = {Linear transforms supporting circular convolution over a commutative ring with identity}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {395-400}, zbl = {0860.15003}, mrnumber = {1357538}, language = {en}, url = {http://dml.mathdoc.fr/item/118765} }
Nessibi, Mohamed Mounir. Linear transforms supporting circular convolution over a commutative ring with identity. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 395-400. http://gdmltest.u-ga.fr/item/118765/
SCC matice nad komutativnim okruhem, PhD-Thesis, Section 5, pp. 63-81, Brno, 1992.
Number Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR 0562104 | Zbl 0991.11001
Linear transforms and convolution, Math. Slovaca 37:1 (1987), 9-30. (1987) | MR 0899012 | Zbl 0622.65143
Linear transforms supporting circular convolution on residue class rings, Math. Slovaca 39:4 (1989), 377-390. (1989) | MR 1094761 | Zbl 0778.11073
Fast Fourier transform and convolution algorithms, Springer-Verlag, Berlin-Heidelberg-New York, 1981. | MR 0606376 | Zbl 0599.65098
Commutative Algebra, Vol. 1, 1958, D. van Nostrand, Inc., Princeton, New Jersey, London.