Our aim is to give a description of $S(\Bbb R)$ and $M(\Bbb R)$, the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.
@article{118763, author = {S\l awomir Turek}, title = {Universal minimal dynamical system for reals}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {371-375}, zbl = {0892.54024}, mrnumber = {1357536}, language = {en}, url = {http://dml.mathdoc.fr/item/118763} }
Turek, Sławomir. Universal minimal dynamical system for reals. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 371-375. http://gdmltest.u-ga.fr/item/118763/
Osnovy obshcheĭ topologii v zadachakh i uprazhneniyakh, Nauka, Moskva, 1974. | MR 0445439
On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7-11. (1990) | MR 1056164
A construction of the greatest ambit, Math. Systems Theory 4 (1970), 243-248. (1970) | MR 0267038
General Topology, PWN, Warszawa, 1977. | MR 0500780 | Zbl 0684.54001
A Generalization of Solenoids, Colloquia Math. Soc. J. Bolyai 23 (Proceedings of Colloquium on Topology, Budapest 1978), Amsterdam 1980, 547-554. | MR 0588803 | Zbl 0449.54035
Elements of Topological Dynamics, Kluwer Academic Publishers, DordrechtBoston-London, 1993. | MR 1249063 | Zbl 0783.54035