Universal minimal dynamical system for reals
Turek, Sławomir
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 371-375 / Harvested from Czech Digital Mathematics Library

Our aim is to give a description of $S(\Bbb R)$ and $M(\Bbb R)$, the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.

Publié le : 1995-01-01
Classification:  54H20
@article{118763,
     author = {S\l awomir Turek},
     title = {Universal minimal dynamical system for reals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {371-375},
     zbl = {0892.54024},
     mrnumber = {1357536},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118763}
}
Turek, Sławomir. Universal minimal dynamical system for reals. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 371-375. http://gdmltest.u-ga.fr/item/118763/

Arkhangel'Skii A.V.; Ponomarev V.I. Osnovy obshcheĭ topologii v zadachakh i uprazhneniyakh, Nauka, Moskva, 1974. | MR 0445439

Balcar B.; Błaszczyk A. On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7-11. (1990) | MR 1056164

Brook R. A construction of the greatest ambit, Math. Systems Theory 4 (1970), 243-248. (1970) | MR 0267038

Engelking R. General Topology, PWN, Warszawa, 1977. | MR 0500780 | Zbl 0684.54001

Gutek A. A Generalization of Solenoids, Colloquia Math. Soc. J. Bolyai 23 (Proceedings of Colloquium on Topology, Budapest 1978), Amsterdam 1980, 547-554. | MR 0588803 | Zbl 0449.54035

De Vries J. Elements of Topological Dynamics, Kluwer Academic Publishers, DordrechtBoston-London, 1993. | MR 1249063 | Zbl 0783.54035