We investigate whether in the setting of approach spaces there exist measures of relative compactness, (relative) sequential compactness and (relative) countable compactness in the same vein as Kuratowski's measure of compactness. The answer is yes. Not only can we prove that such measures exist, but we can give usable formulas for them and we can prove that they behave nicely with respect to each other in the same way as the classical notions.
@article{118760, author = {R. Baekeland and Robert Lowen}, title = {Measures of compactness in approach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {327-345}, zbl = {0838.54020}, mrnumber = {1357533}, language = {en}, url = {http://dml.mathdoc.fr/item/118760} }
Baekeland, R.; Lowen, Robert. Measures of compactness in approach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 327-345. http://gdmltest.u-ga.fr/item/118760/
Measures of Lindelöf and separability in approach spaces, to appear in Internat. J. Math & Math. Sci. | MR 1277744 | Zbl 0813.54022
On a measure of non-compactness, Rend. Mat. Appl. 72 (1987), 193-205 (1988). (1987)
Elements de Mathématique : Livre III, Topologie générale', Hermann, Paris, 1962. | Zbl 0305.54003
Topology, Allan and Bacon, Boston, 1966. | MR 0193606 | Zbl 0397.54003
Point Set Topology, Academic Press, New York, 1964. | MR 0171253 | Zbl 0124.15401
A quasi-topos containing CONV and MET as full subcategories, Internat. J. Math. & Math. Sci. 11:3 (1988), 417-438. (1988) | MR 0947271
Topological quasitopos hulls of categories containing topological and metric objects, Cahiers de Topologie et Géométrie différentielle catégoriques 30:3 (1989), 213-228. (1989) | MR 1029625 | Zbl 0706.18002
Approach spaces: a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226. (1989) | MR 1014427 | Zbl 0676.54012
Kuratowski's measure of non-compactness revisited, Quart. J. Math. Oxford 39:2 (1988), 235-254. (1988) | MR 0947504 | Zbl 0672.54025
Completion of products of metric spaces, Quart. J. Math. Oxford 43:2 (1992), 319-338. (1992) | MR 1176491
Sur les espaces complets, Fund. Math. 15 (1930), 301-309. (1930)
Counterexamples in Topology, Holt, Rinehart and Winston, Inc, 1970. | MR 0266131 | Zbl 0386.54001
Topological Structures, Holt, Rinehart and Winston, 1966. | MR 0200892 | Zbl 0137.15402
Topology for Analysis, Ginn, Waltham, Massachusetts, Toronto, London, 1970. | MR 0451181 | Zbl 0512.54001
General Topology, Addison-Wesley Series in Mathematics, Reading, Massachusetts, 1970. | MR 0264581 | Zbl 1052.54001