Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi$-mixing random variables. Our result is not available in the $D(0,1)$-setting.
@article{118758, author = {Paulo Eduardo Oliveira and Charles Suquet}, title = {An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {293-302}, zbl = {0836.60031}, mrnumber = {1357531}, language = {en}, url = {http://dml.mathdoc.fr/item/118758} }
Oliveira, Paulo Eduardo; Suquet, Charles. An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 293-302. http://gdmltest.u-ga.fr/item/118758/
Convergence of probability measures, Wiley, 1968. | MR 0233396 | Zbl 0944.60003
Espaces autoreproduisants et mesure empirique, méthodes splines en estimation fonctionnelle, Thèse 3$^{eme}$ cycle, Lille, 1980.
Convergence of distributions generated by stationary stochastic processes, Theory Probab. Appl. 13 (1968), 691-696. (1968) | Zbl 0181.44101
Étude des produits scalaires sur l'espace des mesures. Estimation par projection. Tests à noyaux, Thèse d'Etat, Lille, 1978.
The invariance principle for $\varphi$-mixing sequences, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. (1983) | MR 0699789
Some limit theorems for stationary processes, Theory Probability Appl. 7 (1962), 349-382. (1962) | MR 0148125 | Zbl 0119.14204
Private communication, .
Invariance principles in $L^2(0,1)$, Comment. Math. Univ. Carolinae 31:2 (1990), 357-366. (1990) | MR 1077906
Probability Measures on Metric Spaces, Academic Press, 1967. | MR 0226684
An invariance principle for $\varphi$-mixing sequences, Ann. Probab. 13 (1985), 1304-1313. (1985) | MR 0806227
Invariance principles for independent and weakly dependent random variables, Dependence in probability and statistics (Oberwolfach, 1985), 225-268, Progr. Probab. Statist., 11, Birkhauser Boston, Boston, MA, 1986. | MR 0899992 | Zbl 0614.60027
On the invariance principle for stationary $\varphi$-mixing triangular arrays with infinitely divisible limits, Probab. Th. Rel. Fields 75 (1987), 245-259. (1987) | MR 0885465
Une topologie pré-hilbertienne sur l'espace des mesures à signe bornées, Pub. Inst. Stat. Univ. Paris XXXV (1990), 51-77. (1990) | MR 1745002
Relecture des critères de relative compacité d'une famille de probabilités sur un espace de Hilbert, Pub. IRMA 28 (1992), III, Lille.
Convergences stochastiques de suites de mesures aléatoires à signe considérées comme variables aléatoires hilbertiennes, Pub. Inst. Stat. Univ. Paris XXXVII 1-2 (1993), 71-99. (1993) | MR 1743969
On the central limit theorem for $\varphi$-mixing arrays of random variables, Theory Probab. Appl. 35:1 (1990), 131-139. (1990) | MR 1050059