An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences
Oliveira, Paulo Eduardo ; Suquet, Charles
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 293-302 / Harvested from Czech Digital Mathematics Library

Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi$-mixing random variables. Our result is not available in the $D(0,1)$-setting.

Publié le : 1995-01-01
Classification:  60F17,  60G57
@article{118758,
     author = {Paulo Eduardo Oliveira and Charles Suquet},
     title = {An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {293-302},
     zbl = {0836.60031},
     mrnumber = {1357531},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118758}
}
Oliveira, Paulo Eduardo; Suquet, Charles. An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 293-302. http://gdmltest.u-ga.fr/item/118758/

Billingsley P. Convergence of probability measures, Wiley, 1968. | MR 0233396 | Zbl 0944.60003

Berlinet A. Espaces autoreproduisants et mesure empirique, méthodes splines en estimation fonctionnelle, Thèse 3$^{eme}$ cycle, Lille, 1980.

Davydov Y. Convergence of distributions generated by stationary stochastic processes, Theory Probab. Appl. 13 (1968), 691-696. (1968) | Zbl 0181.44101

Guilbart C. Étude des produits scalaires sur l'espace des mesures. Estimation par projection. Tests à noyaux, Thèse d'Etat, Lille, 1978.

Herrndorf N. The invariance principle for $\varphi$-mixing sequences, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. (1983) | MR 0699789

Ibragimov I.A. Some limit theorems for stationary processes, Theory Probability Appl. 7 (1962), 349-382. (1962) | MR 0148125 | Zbl 0119.14204

Jacob P. Private communication, .

Oliveira P.E. Invariance principles in $L^2(0,1)$, Comment. Math. Univ. Carolinae 31:2 (1990), 357-366. (1990) | MR 1077906

Parthasarathy K.R. Probability Measures on Metric Spaces, Academic Press, 1967. | MR 0226684

Peligrad M. An invariance principle for $\varphi$-mixing sequences, Ann. Probab. 13 (1985), 1304-1313. (1985) | MR 0806227

Philipp W. Invariance principles for independent and weakly dependent random variables, Dependence in probability and statistics (Oberwolfach, 1985), 225-268, Progr. Probab. Statist., 11, Birkhauser Boston, Boston, MA, 1986. | MR 0899992 | Zbl 0614.60027

Samur J.D. On the invariance principle for stationary $\varphi$-mixing triangular arrays with infinitely divisible limits, Probab. Th. Rel. Fields 75 (1987), 245-259. (1987) | MR 0885465

Suquet Ch. Une topologie pré-hilbertienne sur l'espace des mesures à signe bornées, Pub. Inst. Stat. Univ. Paris XXXV (1990), 51-77. (1990) | MR 1745002

Suquet Ch. Relecture des critères de relative compacité d'une famille de probabilités sur un espace de Hilbert, Pub. IRMA 28 (1992), III, Lille.

Suquet Ch. Convergences stochastiques de suites de mesures aléatoires à signe considérées comme variables aléatoires hilbertiennes, Pub. Inst. Stat. Univ. Paris XXXVII 1-2 (1993), 71-99. (1993) | MR 1743969

Utev S.A. On the central limit theorem for $\varphi$-mixing arrays of random variables, Theory Probab. Appl. 35:1 (1990), 131-139. (1990) | MR 1050059