We show that a stochastic operator acting on the Banach lattice $L^1(m)$ of all $m$-integrable functions on $(X,\,\Cal A)$ is quasi-compact if and only if it is uniformly smoothing (see the definition below).
@article{118745, author = {Wojciech Bartoszek}, title = {On uniformly smoothing stochastic operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {203-206}, zbl = {0843.47018}, mrnumber = {1334427}, language = {en}, url = {http://dml.mathdoc.fr/item/118745} }
Bartoszek, Wojciech. On uniformly smoothing stochastic operators. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 203-206. http://gdmltest.u-ga.fr/item/118745/
On quasi-compactness and invariant measures of Markov operators on $C(X)$, Bull. Acad. Polon. Sci. 34 (1986), 69-72. (1986) | MR 0850316 | Zbl 0614.47030
Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. XCI (1988), 179-188. (1988) | MR 0985720
On the asymptotic behaviour of iterates of positive linear operators, Die Suid-Afrikaanse Wiskundevereniging Mededelings 25:1 (1993), 48-78. (1993)
Asymptotic decomposition of smoothing positive operators, Acta Universitatis Carolinae (1989), 30:2 77-81. (1989) | MR 1046450
Asymptotic decomposition of Markov operators, Bull. Acad. Polon. Sci. 35 no. 5-6 (1987), 321-327. (1987) | MR 0919219
Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge, 1985. | MR 0832868 | Zbl 0606.58002
A mean ergodic theorem, Proc. Amer. Math. Soc. 24 (1970), 438-439. (1970) | MR 0252605 | Zbl 0191.42204