On uniformly smoothing stochastic operators
Bartoszek, Wojciech
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 203-206 / Harvested from Czech Digital Mathematics Library

We show that a stochastic operator acting on the Banach lattice $L^1(m)$ of all $m$-integrable functions on $(X,\,\Cal A)$ is quasi-compact if and only if it is uniformly smoothing (see the definition below).

Publié le : 1995-01-01
Classification:  47A35,  47B07,  47B38,  47B55,  47B65,  47D07
@article{118745,
     author = {Wojciech Bartoszek},
     title = {On uniformly smoothing stochastic operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {203-206},
     zbl = {0843.47018},
     mrnumber = {1334427},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118745}
}
Bartoszek, Wojciech. On uniformly smoothing stochastic operators. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 203-206. http://gdmltest.u-ga.fr/item/118745/

Bartoszek W. On quasi-compactness and invariant measures of Markov operators on $C(X)$, Bull. Acad. Polon. Sci. 34 (1986), 69-72. (1986) | MR 0850316 | Zbl 0614.47030

Bartoszek W. Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. XCI (1988), 179-188. (1988) | MR 0985720

Bartoszek W. On the asymptotic behaviour of iterates of positive linear operators, Die Suid-Afrikaanse Wiskundevereniging Mededelings 25:1 (1993), 48-78. (1993)

Komorník J. Asymptotic decomposition of smoothing positive operators, Acta Universitatis Carolinae (1989), 30:2 77-81. (1989) | MR 1046450

Komorník J.; Lasota A. Asymptotic decomposition of Markov operators, Bull. Acad. Polon. Sci. 35 no. 5-6 (1987), 321-327. (1987) | MR 0919219

Lasota A.; Mackey M.C. Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge, 1985. | MR 0832868 | Zbl 0606.58002

Sine R. A mean ergodic theorem, Proc. Amer. Math. Soc. 24 (1970), 438-439. (1970) | MR 0252605 | Zbl 0191.42204