Distinguishing Lindelöfness and inverse Lindelöfness
Malykhin, Viacheslav I.
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 171-176 / Harvested from Czech Digital Mathematics Library

On $\omega _1$ a Hausdorff inverse Lindelöf non Lindelöf topology has been constructed.

Publié le : 1995-01-01
Classification:  03E35,  03E50,  54A25,  54A35,  54D20
@article{118742,
     author = {Viacheslav I. Malykhin},
     title = {Distinguishing Lindel\"ofness and inverse Lindel\"ofness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {171-176},
     zbl = {0838.54004},
     mrnumber = {1334424},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118742}
}
Malykhin, Viacheslav I. Distinguishing Lindelöfness and inverse Lindelöfness. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 171-176. http://gdmltest.u-ga.fr/item/118742/

Matveev M.V. Inverse compactness, to appear. | MR 1320251 | Zbl 0920.54024

Malykhin V.I.; Matveev M.V. Inverse compactness versus compactness, to appear. | MR 1462390 | Zbl 0920.54024

Van Mill J. An introduction to $\beta ømega $, in Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers B.V., 1984, p. 503. | MR 0776630 | Zbl 0555.54004