Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \Bbb R$ be a Whitney map. We prove that there exist numbers $0
@article{118740, author = {Alejandro Illanes}, title = {Whitney blocks in the hyperspace of a finite graph}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {36}, year = {1995}, pages = {137-147}, zbl = {0833.54009}, mrnumber = {1334422}, language = {en}, url = {http://dml.mathdoc.fr/item/118740} }
Illanes, Alejandro. Whitney blocks in the hyperspace of a finite graph. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 137-147. http://gdmltest.u-ga.fr/item/118740/
On the hyperspace of subcontinua of a finite graph, Fund. Math. 62 (1968), 265-286. (1968) | MR 0236881 | Zbl 0179.28101
On the hyperspace of subcontinua of a finite graph, Fund. Math. 63 (1968), 225-255. (1968) | MR 0236882 | Zbl 0179.28101
Correction to the paper ``On the hyperspace of subcontinua of a finite graph I, Fund. Math. 69 (1970), 207-211. (1970) | MR 0273575
Whitney continua of curves, Trans. Amer. Math. Soc. 300 (1987), 367-381. (1987) | MR 0871681 | Zbl 0621.54006
Whitney continua of graphs admit all homotopy types of compact connected ANRs, Fund. Math 129 (1988), 161-166. (1988) | MR 0962537 | Zbl 0652.55013
A note on fundamental dimensions of Whitney continua of graphs, J. Math. Soc. Japan 41 (1989), 243-250. (1989) | MR 0984749 | Zbl 0651.54002
Shore points in dendroids and conical pointed hyperspaces, to appear in Top. Appl. | MR 1177162 | Zbl 0789.54010
Hyperspaces of sets, Marcel Dekker, New York, Basel, 1978. | MR 0500811 | Zbl 1125.54001
Continua whose hyperspace is a product, Fund. Math. 108 (1980), 49-66. (1980) | MR 0585559 | Zbl 0456.54023
Hiperespacios con punta de cono, Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, 1989.