$\omega^\omega$-directedness and a question of E. Michael
Daniels, Peg
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 115-121 / Harvested from Czech Digital Mathematics Library

We define $\omega ^{\omega }$-directedness, investigate various properties to determine whether they have this property or not, and use our results to obtain easier proofs of theorems due to Laurence and Alster concerning the existence of a Michael space, i.e\. a Lindelöf space whose product with the irrationals is not Lindelöf.

Publié le : 1995-01-01
Classification:  03E35,  54A35,  54G20
@article{118737,
     author = {Peg Daniels},
     title = {$\omega^\omega$-directedness and a question of E. Michael},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {115-121},
     zbl = {0866.54007},
     mrnumber = {1334419},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118737}
}
Daniels, Peg. $\omega^\omega$-directedness and a question of E. Michael. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 115-121. http://gdmltest.u-ga.fr/item/118737/

Alster K. On the product of a Lindelöf space with the space of irrationals under Martin's Axiom, Proc. Amer. Math. Soc. 110 (1990), 543-547. (1990) | MR 0993736

Kunen K. Set Theory, North-Holland, Amsterdam, 1980. | MR 0597342 | Zbl 0960.03033

Laurence L.B. The influence of a small cardinal on the product of a Lindelöf space and the irrationals, Proc. Amer. Math. Soc. 110 (1990), 535-542. (1990) | MR 1021211

Michael E. Paracompactness and the Lindelöf property in finite and countable Cartesian products, Comp. Math. 23 (1971), 199-214. (1971) | MR 0287502 | Zbl 0216.44304

Van Douwen E.K. The integers and topology, in Handbook of Set-Theoretic Topology, ed. K. Kunen and J.E. Vaughan, North Holland, Amsterdam, 1984. | MR 0776619 | Zbl 0561.54004