The C$^1$ stability of slow manifolds for a system of singularly perturbed evolution equations
Ševčovič, Daniel
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995), p. 89-107 / Harvested from Czech Digital Mathematics Library

In this paper we investigate the singular limiting behavior of slow invariant manifolds for a system of singularly perturbed evolution equations in Banach spaces. The aim is to prove the C$^{1}$ stability of invariant manifolds with respect to small values of the singular parameter.

Publié le : 1995-01-01
Classification:  34D45,  34E15,  34G20,  35B25,  35B40,  35C30,  35K55,  35L15,  47H20
@article{118735,
     author = {Daniel \v Sev\v covi\v c},
     title = {The C$^1$ stability of slow manifolds for a system of singularly perturbed evolution equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {36},
     year = {1995},
     pages = {89-107},
     zbl = {0821.35011},
     mrnumber = {1334417},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118735}
}
Ševčovič, Daniel. The C$^1$ stability of slow manifolds for a system of singularly perturbed evolution equations. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) pp. 89-107. http://gdmltest.u-ga.fr/item/118735/

Chow S.-N.; Lu K. Invariant manifolds for flows in Banach spaces, J. of Differential Equations 74 (1988), 285-317. (1988) | MR 0952900 | Zbl 0691.58034

Foias C.; Sell G.R.; Temam R. Inertial manifolds for nonlinear evolutionary equations, J. of Differential Equations 73 (1988), 309-353. (1988) | MR 0943945 | Zbl 0643.58004

Henry D. Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer Verlag, 1981. | MR 0610244 | Zbl 0663.35001

Marion M. Inertial manifolds associated to partly dissipative reaction - diffusion systems, J. of Math. Anal. Appl. 143 (1989), 295-326. (1989) | MR 1022538 | Zbl 0689.58039

Miklavčič M. A sharp condition for existence of an inertial manifold, J. of Dynamics and Differential Equations 3 (1991), 437-457. (1991) | MR 1118343

Mora X.; Solà-Morales J. The singular limit dynamics of semilinear damped wave equation, J. of Differential Equations 78 (1989), 262-307. (1989) | MR 0992148

Richards J. On the gaps between numbers which are the sum of two squares, Adv. Math. 46 (1982), 1-2. (1982) | MR 0676985

Ševčovič D. Limiting behaviour of invariant manifolds for a system of singularly perturbed evolution equations, Math. Methods in the Appl. Sci. 17 (1994), 643-666. (1994) | MR 1280649

Ševčovič D. Limiting behavior of global attractors for singularly perturbed beam equations with strong damping, Comment. Math. Univ. Carolinae 32 (1991), 45-60. (1991) | MR 1118289

Sviridyuk G.A. The Deborah number and a class of semilinear equations of Sobolev type (English translation), Soviet. Math. Doklady 44 No.1 (1992), 297-301. (1992) | MR 1152892

Sviridyuk G.A.; Sukacheva T.G. Cauchy problem for a class of semilinear equations of Sobolev type (English translation), Sibirskii Matem. Zhurnal 31 No.5 (1990), 120-127. (1990) | MR 1088921

Vanderbauwhede A.; Van Gils V.A. Center manifolds and contraction on a scale of Banach spaces, J. of Funct. Analysis 72 (1987), 209-224. (1987) | MR 0886811