It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
@article{118721, author = {Ji\v r\'\i\ Rohn}, title = {Checking positive definiteness or stability of symmetric interval matrices is NP-hard}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {795-797}, zbl = {0818.65032}, mrnumber = {1321250}, language = {en}, url = {http://dml.mathdoc.fr/item/118721} }
Rohn, Jiří. Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 795-797. http://gdmltest.u-ga.fr/item/118721/
Computers and Intractability: A Guide to the Theory of NP- Completeness, Freeman, San Francisco, 1979. | MR 0519066 | Zbl 0411.68039
Several NP-hard problems arising in robust stability analysis, Math. of Control, Signals, and Systems 6 (1993), 99-105. (1993) | MR 1358063 | Zbl 0792.93100
Checking robust nonsingularity is NP-hard, Math. of Control, Signals, and Systems 6 (1993), 1-9. (1993) | MR 1358057
Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl. 15 (1994), 175-184. (1994) | MR 1257627 | Zbl 0796.65065