We introduce the properties of a space to be strictly $\operatorname{WFU}(M)$ or strictly $\operatorname{SFU}(M)$, where $\emptyset \neq M\subset \omega ^{\ast }$, and we analyze them and other generalizations of $p$-sequentiality ($p\in \omega ^{\ast }$) in Function Spaces, such as Kombarov's weakly and strongly $M$-sequentiality, and Kocinac's $\operatorname{WFU}(M)$ and $\operatorname{SFU}(M)$-properties. We characterize these in $C_\pi (X)$ in terms of cover-properties in $X$; and we prove that weak $M$-sequentiality is equivalent to $\operatorname{WFU}(L(M))$-property, where $L(M)=\{{}^{\lambda }p:\lambda <\omega _1$ and $p\in M\}$, in the class of spaces which are $p$-compact for every $p\in M\subset \omega ^{\ast }$; and that $C_\pi (X)$ is a $\operatorname{WFU}(L(M))$-space iff $X$ satisfies the $M$-version $\delta _M$ of Gerlitz and Nagy's property $\delta $. We also prove that if $C_\pi (X)$ is a strictly $\operatorname{WFU}(M)$-space (resp., $\operatorname{WFU}(M)$-space and every $\operatorname{RK}$-predecessor of $p\in M$ is rapid), then $X$ satisfies $C''$ (resp., $X$ is zero-dimensional), and, if in addition, $X\subset \Bbb R$, then $X$ has strong measure zero (resp., $X$ has measure zero), and we conclude that $C_\pi (\Bbb R)$ is not $p$-sequential if $p\in \omega ^{\ast }$ is selective. Furthermore, we show: (a) if $p\in \omega ^{\ast }$ is selective, then $C_\pi (X)$ is an $\operatorname{FU}(p)$-space iff $C_\pi (X)$ is a strictly $\operatorname{WFU}(T(p))$-space, where $T(p)$ is the set of $\operatorname{RK}$-equivalent ultrafilters of $p$; and (b) $p\in \omega ^{\ast }$ is semiselective iff the subspace $\omega \cup \{p\}$ of $\beta \omega $ is a strictly $\operatorname{WFU}(T(P))$-space. Finally, we study these properties in $C_\pi (Z)$ when $Z$ is a topological product of spaces.
@article{118717, author = {Salvador Garc\'\i a-Ferreira and Angel Tamariz-Mascar\'ua}, title = {$p$-sequential like properties in function spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {753-771}, zbl = {0814.54012}, mrnumber = {1321246}, language = {en}, url = {http://dml.mathdoc.fr/item/118717} }
García-Ferreira, Salvador; Tamariz-Mascarúa, Angel. $p$-sequential like properties in function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 753-771. http://gdmltest.u-ga.fr/item/118717/
The spectrum of frequences of topological spaces and their classification (in Russian), Dokl. Akad. Nauk SSSR 206 (1972), 265-268. (1972) | MR 0394575
The spectrum of frequences of a topological space and the product operation (in Russian), Trudy Moskov. Mat. Obsc. 40 (1979), 171-266. (1979) | MR 0550259
Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33-96. (1978) | MR 0526012
Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. (1968) | MR 0240767
A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. (1970) | MR 0251697 | Zbl 0198.55401
Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. (1970) | MR 0277371 | Zbl 0231.02067
Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), 417-455. (1977) | MR 0454893
Topological groups, in K. Kunen and J.E. Vaughan, editors, Handbook of Set-Theoretic Topology, North-Holland, 1984. | MR 0776643 | Zbl 1071.54019
The Theory of Ultrafilters, Springer Verlag, Berlin-Heidelberg-New York, 1974. | MR 0396267 | Zbl 0298.02004
Pixley-Roy spaces over subsets of reals, Top. Appl. 29 (1988), 93-106. (1988) | MR 0944073
General Topology, Sigma Series in Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989. | MR 1039321 | Zbl 0684.54001
Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. (1967) | MR 0203676
Comfort types of ultrafilters, Proc. Amer. Math. Soc. 120 (1994), 1251-1260. (1994) | MR 1170543
On ${FU}(p)$-spaces and $p$-sequential spaces, Comment. Math. Univ. Carolinae 32 (1991), 161-171. (1991) | MR 1118299 | Zbl 0789.54032
$p$-Fréchet-Urysohn property of function spaces, to be published in Top. and Appl.
On $p$-sequential $p$-compact spaces, Comment. Math. Univ. Carolinae 34 (1993), 347-356. (1993) | MR 1241743
Some generalizations of rapid ultrafilters in topology and Id-fan tightness, to be published in Tsukuba Journal of Math.
Some properties of $C(X)$, II, Topology Appl. 15 (1983), 255-262. (1983) | MR 0694545
Products of convergence properties, Comment. Math. Univ. Carolinae 23 (1982), 747-766. (1982) | MR 0687569
Some properties of $C(X)$, I, Topology Appl. 14 (1982), 151-161. (1982) | MR 0667661
Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189. (1968) | MR 0250257
A generalization of chain-net spaces, Publ. Inst. Math. (Beograd) 44 (58), 1988, pp. 109-114. | MR 0995414 | Zbl 0674.54003
On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983), 544-547. (1983) | Zbl 0531.54007
Some points in $\beta N$, Proc. Cambridge Philos. Soc. 80 (1976), 358-398. (1976) | MR 0427070 | Zbl 0345.02047
Forcing with filters and complete combinatorics, Ann. Math. Logic 42 (1989), 125-163. (1989) | MR 0996504 | Zbl 0681.03035
The sequentiality and Fréchet-Urysohn property with respect to ultrafilters, Acta Univ. Carolinae Math. et Phy. 31 (1990), 65-69. (1990) | MR 1101417
Cartesian products of Fréchet topological groups and function spaces, Acta Math. Hung. 60 (1992), 207-215. (1992) | MR 1177675
Topological Properties of Spaces of Continuous functions, Lecture Notes in Math. 1315, Springer Verlag, 1980.
There are no $Q$-points in Laver's model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), 103-106. (1980) | MR 0548093 | Zbl 0439.03035
Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793-801. (1981) | MR 0630057 | Zbl 0474.22001
On sequentiality of spaces of continuous functions, Russian Math. Surveys 37 (1982), 190-191. (1982) | MR 0676634
Property $C''$ and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917-919. (1988) | MR 0964873 | Zbl 0691.54007
The construction of models of set theory by the method of ultraproducts, Z. Math. Logik Grundlagen Math. 8 (1962), 293-304. (1962) | MR 0146085