The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.
@article{118714, author = {Juraj Weisz}, title = {On a method for a-posteriori error estimation of approximate solutions to parabolic problems}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {735-740}, zbl = {0822.65067}, mrnumber = {1321243}, language = {en}, url = {http://dml.mathdoc.fr/item/118714} }
Weisz, Juraj. On a method for a-posteriori error estimation of approximate solutions to parabolic problems. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 735-740. http://gdmltest.u-ga.fr/item/118714/
Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) | MR 1083324 | Zbl 0732.65093
Konjugierte Probleme und a-posteriori Fehlerabschätzungen,, Math. Nachrichten 73 (1976), 315-333. (1976) | MR 0435959
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie -Verlag Berlin, 1974 (Russian Mir Moskva 1978). | MR 0636412
A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem, Commentationes Math. Univ. Carolinae 31 (1990), 315-322. (1990) | MR 1077902 | Zbl 0709.65074