A closed subset of the real line which is right porous but is not $\sigma$-left-porous is constructed.
@article{118711, author = {R. J. N\'ajares and Lud\v ek Zaj\'\i \v cek}, title = {A $\sigma$-porous set need not be $\sigma$-bilaterally porous}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {697-703}, zbl = {0822.26001}, mrnumber = {1321240}, language = {en}, url = {http://dml.mathdoc.fr/item/118711} }
Nájares, R. J.; Zajíček, Luděk. A $\sigma$-porous set need not be $\sigma$-bilaterally porous. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 697-703. http://gdmltest.u-ga.fr/item/118711/
Continuous functions need not have $ \sigma $-porous graphs, Real Anal. Exchange 11 (1985-86), 194-203. (1985-86) | MR 0828490 | Zbl 0607.26005
On $ \sigma $-porous sets and Borel sets, Topology Appl. 33 (1989), 99-103. (1989) | MR 1020986
Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $(q)$, Časopis Pěst. Mat. 101 (1976), 350-359. (1976) | MR 0457731 | Zbl 0341.30026
Porosity and $ \sigma $-porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987-88) | MR 0943561
A symmetric porosity conjecture of L. Zajíček, Real Anal. Exchange 17 (1991-92), 258-271. (1991-92) | MR 1147367